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Abstract

We consider the distributed detection problem in trees with unbounded height. The first
configuration we studied in this report is a balanced binary relay tree, where the leaves
of the tree correspond to N identical and independent sensors. Only the leaves are
sensors. The root of the tree represents a fusion center that makes the overall detection
decision. Each of the other nodes in the tree are relay nodes that combine two binary
messages to form a single output binary message. In this way, the information from
the sensors is aggregated into the fusion center via the relay nodes. In Chapter II,
we assume that the fusion rules are the unit-threshold likelihood-ratio test which are
locally optimal in the sense of minimizing the total error probability after fusion. We
describe the evolution of the Type I and Type II error probabilities of the binary data
as it propagates from the leaves towards the root. Tight upper and lower bounds for
the total error probability at the fusion center as functions of N are derived. These
characterize how fast the total error probability converges to 0 with respect to N , even
if the individual sensors have error probabilities that converge to 1/2.

In Chapter III, we study the detection performance of balanced binary relay trees
where sensors fail with certain probability, in which case we show that the scaling law
for the decay rate of the total error probability remains

√
N . Moreover, we study the

case where the communication links in the tree network fail with certain probabili-
ties. Not surprisingly, the step-wise reduction of the total detection error probability is
slower than the case where the network has no communication link failures. We show
that, under the assumption of identical communication link failure probability in the
tree, the exponent of the total error probability at the fusion center is o(

√
N) in the

asymptotic regime. In addition, if the given communication link failure probabilities
decrease to 0 as communications get closer to the fusion center, then the decay ex-
ponent of the total error probability is Θ(

√
N), provided that the decay of the failure

probabilities is sufficiently fast.

In Chapter IV, we call the set of all fusion rules in the tree a fusion strategy. We
study the fusion strategy that maximizes the reduction in the total error probability
between the sensors and the fusion center. We formulate this optimization problem as
a deterministic dynamic program. For trees with finite height, we provide the explicit
optimal strategy. Moreover, we show that the reduction in the total error probability is a
submodular function. Hence the greedy strategy which only maximizes the level-wise
reduction in the total error probability, is close-to the globally optimal strategy in terms
of the reduction in the probability of error.

In Chapter V, we consider a more general M -ary relay tree configuration, where
each non-leaf node in the tree has M child nodes and only binary messages are al-
lowed to communicate throughout the tree. Similarly we derive tight upper and lower
bounds for the Type I and II error probabilities at the fusion center as explicit functions
of the number of sensors. These bounds characterize how fast the error probabilities
converge to 0 with respect to the number of sensors. Building on the work on the de-
tection performance of M -ary relay trees with binary messages, we further study the
case of non-binary relay message alphabets. We characterize the exponent of the error
probability with respect to the message alphabet size D, showing how the detection



performance increases with D. Our method involves reducing a tree with non-binary
relay messages into an equivalent higher-degree tree with only binary messages.

Last, the connections between information geometry and performance of sensor
networks for target tracking are explored to pursue a better understanding of place-
ment, planning and scheduling issues. Firstly, the integrated Fisher information dis-
tance (IFID) between the states of two targets is analyzed by solving the geodesic
equations and is adopted as a measure of target resolvability by the sensor. The dif-
ferences between the IFID and the well known Kullback-Leibler divergence (KLD)
are highlighted. We also explain how the energy functional, which is the “integrated,
differential” KLD, relates to the other distance measures. Secondly, the structures of
statistical manifolds are elucidated by computing the canonical Levi-Civita affine con-
nection as well as Riemannian and scalar curvatures. We show the relationship between
the Ricci curvature tensor field and the amount of information that can be obtained by
the network sensors. Finally, an analytical presentation of statistical manifolds as an
immersion in the Euclidean space for distributions of exponential type is given. The
significance and potential to address system definition and planning issues using infor-
mation geometry, such as the sensing capability to distinguish closely spaced targets,
calculation of the amount of information collected by sensors and the problem of opti-
mal scheduling of network sensor and resources, etc., are demonstrated. The proposed
analysis techniques are presented via three basic sensor network scenarios: a simple
range-bearing radar, two bearings-only passive sonars, and three ranges-only detectors,
respectively.
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Chapter 1

Introduction

The distributed detection has been studied intensively in the last 30 years. This problem
is similar to a classical detection or hypothesis testing problem, except that each sensor
makes an individual measurement but it is only allowed to communicated a compressed
version of its raw measurement. The objective is to choose the most ‘informative’
summarized messages such that a global objective function is optimized. For example,
the probability of error for the detection decision is minimized. This problem is also
know as decentralized detection or data fusion in many literatures. This subject is
also of interest to the social learning perspective, which focus on how fast one peer
can learn from other peers in a social network. We begin our discussion with some
background and suvey of this intriguring problem.

1.1 Background and Related Work

Consider a hypothesis testing problem under two scenarios: centralized and decentral-
ized. Under the centralized network scenario, all sensors send their raw measurements
to the fusion center, which makes a decision based on these measurements. In the de-
centralized network introduced in [1], sensors send summaries of their measurements
and observations to the fusion center. The fusion center then makes a decision. In a
decentralized network, information is summarized into smaller messages. Evidently,
the decentralized network cannot perform better than the centralized network. It gains
because of its limited use of resources and bandwidth; through transmission of sum-
marized information it is more practical and efficient.

The decentralized network in [1] involves the parallel architecture, also known as
the star architecture [1]–[17], [40], in which all sensors directly connect to the fusion
center. Most literatures focus on the issue about how to quantize the measurements
so that the probability of error after fusion is minimized. Another perspective is to
study how fast the error probability decays with respect to the number of sensors in
a large scale network. A typical result is that under the assumption of (conditionally)
independence of the sensor observations, the decay rate of the error probability in the
parallel architecture is exponential [6].
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Several different sensor topologies have been studied under the assumption of con-
ditional independence. The first configuration for such a fusion network considered
was the tandem network [18]–[22], [40], in which each non-leaf node combines the
information from its own sensor with the message it has received from the node at one
level down, which is then transmitted to the node at the next level up. The decay rate
of the error probability in this case is sub-exponential [22]. Specifically, as the number
of sensors N goes to infinity, the exponent of the error probability is dominated by Nd

asymptotically for all d > 1/2 [20]. This sensor network represents a situation where
the length of the network is the longest possible among all networks withN leaf nodes.

The asymptotic performance of single-rooted tree network with bounded height is
discussed in [23]–[31], [40]. Even though the error probability in the parallel configu-
ration decreases exponentially, in a practical implementation, the resources consumed
in having each sensor transmit directly to the fusion center might be regarded as exces-
sive. Energy consumption can be reduced by setting up a directed tree, rooted at the
fusion center. In this tree structure, measurements are summarized by leaf sensor nodes
and sent to their parent nodes, each of which fuses all the messages it receives with its
own measurement (if any) and then forwards the new message to its parent node at
the next level. This process takes place throughout the tree culminating in the fusion
center, where a final decision is made. For bounded-height tree configuration under
the Neyman-Pearson criterion, the optimal error exponent is as good as that of the par-
allel configuration under certain conditions. For example, for a bounded-height tree
network with limτN→∞ `N/τN = 1, where τN denotes the total number of nodes and
`N denotes the number of leaf nodes, the optimal error exponent is the same as that of
the parallel configuration [24], [26]. For bounded-height tree configuration under the
Bayesian criterion, the error probability decays exponentially fast to 0 with an error
exponent which is worse than the one associated with the parallel configuration [27].

The variation of detection performance with increasing tree height is still largely
unexplored. If only the leaf nodes have sensors making observations, and all other
nodes simply fuse the messages received and forward the new messages to their par-
ents, the tree network is known as a relay tree. The balanced binary relay tree has
been addressed in [32], in which it is assumed that the leaf nodes are independent sen-
sors with identical Type I error probability (also known as probability of false alarm,
denoted by α0) and identical Type II error probability (also known as probability of
missed detection, denoted by β0). It is shown there that if the sensor error probabilities
satisfy the condition α0 + β0 < 1, then both the Type I and Type II error probabilities
at the fusion center converge to 0 as the N goes to infinity. If α0 + β0 > 1, then both
the Type I and Type II error probabilities converge to 1, which means that if we flip the
decision at the fusion center, then the Type I and Type II error probabilities converge
to 0. Because of this symmetry, it suffices to consider the case where α0 + β0 < 1. If
α0 + β0 = 1, then the Type I and II error probabilities add up to 1 at each node of the
tree. In consequence, this case is not of interest.

In [36], this problem was considered in an M -ary relay tree configuration, where
each node with the exception of the sensors has M child nodes. Notice that balanced
binary relay trees are simply special cases of M -ary relay trees. To describe the result
in [36], let PN be the total error probability at the fusion center and suppose that each
sensor and relay node only transmit binary messages upward to a node at the next level.
Then, it is shown in [36] that with any combination of fusion rules, the decay exponent
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is upper bounded:
log2 P

−1
N = O(N logM

(M+1)
2 ).

The case where the relay nodes and the fusion center use the majority dominance rule
(with random tie-breaking) to combine messages was also considered in [36], in which
case the decay rate of the total error probability is almost optimal. More precisely,

log2 P
−1
N = Ω(N logMb (M+1)

2 c).

Therefore, in the case where M is odd, the majority dominance rule achieves the op-
timal decay exponent. In the case where M is even, there is a gap between the two
bounds. This gap is evident in the case of balanced binary relay tree (M = 2), where
it is easy to show that the Type I and II error probabilities do not change after fusion
with the majority dominance rule. This shows that the lower bound above is tight.

In this report, we develop several new results concerning the detection performance
for trees with unbounded height. We show that in trees with unbounded-height, the de-
cay rate of the total error probability is sub-exponentially fast and we show the explicit
asymptotic decay exponent.
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Chapter 2

Balanced Binary Relay Trees

In this chapter, we consider the balanced binary relay tree configuration and describe
the precise evolution of the Type I and Type II error probabilities in this case. In
addition, we provide upper and lower bounds for the total error probability at the fusion
center as functions ofN . These characterize the decay rate of the total error probability.
We also show that the total error probability converges to 0 under certain condition even
if the sensors are asymptotically crummy, that is, α0 + β0 → 1.

2.1 Problem Formulation

We consider the problem of binary hypothesis testing betweenH0 andH1 in a balanced
binary relay tree. Leaf nodes are sensors undertaking initial and independent detections
of the same event in a scene. These measurements are summarized into binary mes-
sages and forwarded to nodes at the next level. Each non-leaf node with the exception
of the root, the fusion center, is a relay node, which fuses two binary messages into
one new binary message and forwards the new binary message to its parent node. This
process takes place at each node culminating in the fusion center, at which the final
decision is made based on the information received. Only the leaves are sensors in this
tree architecture.

In this configuration, as shown in Fig. 2.1, the closest sensor to the fusion center is
as far as it could be, in terms of the number of arcs in the path to the root. In this sense,
this configuration is the worst case among all relay trees with N sensors. Moreover, in
contrast to the configuration in [24] and [26] discussed earlier, in our balanced binary
tree we have limτN→∞ `N/τN = 1/2 (as opposed to 1 in [24] and [26]). Hence, the
number of times that information is aggregated is essentially as large as the number
of measurements (cf., [24] and [26], in which the number of measurements dominates
the number of fusions). In addition, the height of the tree is logN (log stands for
binary logrithm if not specified in this report), which grows as the number of sensors
increases.

We assume that all sensors are independent given each hypothesis, and that all sen-
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Figure 2.1: A balanced binary relay tree with height k. Circles represent sensors mak-
ing measurements. Diamonds represent relay nodes which fuse binary messages. The
rectangle at the root represents the fusion center making an overall decision.

sors have identical Type I error probability α0 and identical Type II error probability
β0. We apply the likelihood-ratio test [41] with threshold 1 as the fusion rule at the
relay nodes and at the fusion center. This fusion rule is locally (but not necessarily
globally) optimal in the case of equally likely hypothesesH0 andH1; i.e., it minimizes
the total error probability locally at each fusion node. In the case where the hypotheses
are not equally likely, the locally optimal fusion rule has a different threshold value,
which is the ratio of the two hypothesis probabilities. However, this complicates the
analysis without bringing any additional insights. Therefore, for simplicity, we hence-
forth assume a threshold value of 1 in our analysis. We are interested in following
questions:

• What are these Type I and Type II error probabilities as functions of N?

• Will they converge to 0 at the fusion center?

• If yes, how fast will they converge with respect to N?

Fusion at a single node receiving information from the two immediate child nodes
where these have identical Type I error probabilities α and identical Type II error prob-
abilities β provides a detection with Type I and Type II error probabilities denoted by
(α′, β′), and given by [32]:

(α′, β′) = f(α, β) :=

 (1− (1− α)2, β2), α ≤ β,

(α2, 1− (1− β)2), α > β.
(2.1)

Evidently, as all sensors have the same error probability pair (α0, β0), all relay
nodes at level 1 will have the same error probability pair (α1, β1) = f(α0, β0), and by

5
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Figure 2.2: A trajectory of the sequence {(αk, βk)} in the (α, β) plane.

recursion,
(αk+1, βk+1) = f(αk, βk), k = 0, 1, . . . , (2.2)

where (αk, βk) is the error probability pair of nodes at the k-th level of the tree.

The recursive relation (2.2) allows us to consider the pair of the Type I and II error
probabilities as a discrete dynamic system. In [32], which focuses on the convergence
issues for the total error probability, convergence was proved using Lyapunov methods.
The analysis of the precise evolution of the sequence {(αk, βk)} and the total error
probability decay rate remains open. In this report, we will establish upper and lower
bounds for the total error probability and deduce the precise decay rate of the total error
probability.

To illustrate the ideas, consider first a single trajectory for the dynamic system given
by (2.1), and starting at the initial state (α0, β0). This trajectory is shown in Fig. 2.2.
It exhibits different behaviors depending on its distance from the β = α line. The
trajectory approaches β = α very fast initially, but when (αk, βk) approaches within a
certain neighborhood of the line β = α, the next pair (αk+1, βk+1) will appear on the
other side of that line. In the next section, we will establish theorems that characterize
the precise step-by-step behavior of the dynamic system (2.2). In Section 2.4, we derive
upper and lower bounds for (twice) the total error probability PN at the fusion center as
functions of N . These bounds show that the convergence of the total error probability
is sub-exponential. Specifically, the exponent of PN is essentially

√
N (cf., [24], [26],

and [27], where the convergence of the total error probability is exponential in trees
with bounded height; more precisely, under the Neyman-Pearson criterion, the optimal
error exponent is the same as that of the parallel configuration if leaf nodes dominate;
i.e., limτN→∞ `N/τN = 1; but under the Bayesian criterion it is worse).
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Figure 2.3: (a) Regions B1, B2, and RL in the (α, β) plane. (b) The trajectory in Fig.
2.2 superimposed on (a), where solid lines represent boundaries of Bm and dashed
lines represent boundaries of R.

2.2 Evolution of the Type I and II error probabilities

The relation (2.1) is symmetric about both of the lines α+β = 1 and β = α. Therefore,
it suffices to study the evolution of the dynamic system {(αk, βk)} only in the region
bounded by α+ β < 1 and β ≥ α. We denote

U := {(α, β) ≥ 0|α+ β < 1 and β ≥ α}

to be this triangular region. Similarly, define the complementary triangular region

L := {(α, β) ≥ 0|α+ β < 1 and β < α}.

We denote the following region by B1:

B1 := {(α, β) ∈ U|(1− α)2 + β2 ≤ 1}.

If (αk, βk) ∈ B1, then the next pair (αk+1, βk+1) = f(αk, βk) crosses the line β = α
to the opposite side from (αk, βk). More precisely, if (αk, βk) ∈ U , then (αk, βk) ∈
B1 if and only if (αk+1, βk+1) = f(αk, βk) ∈ L. In other words, B1 is the inverse
image of L under mapping f in U . The set B1 is shown in Fig. 2.3(a). Fig. 2.3(b)
illustrates this behavior of the trajectory for the example in Fig. 2.2. For instance, as
shown in Fig. 2.3(b), if the state is at point 1 in B1, then it jumps to the next state point
2, on the other side of β = α.

Denote the following region by B2:

B2 := {(α, β) ∈ U|(1− α)2 + β2 ≥ 1 and (1− α)4 + β4 ≤ 1}.

It is easy to show that if (αk, βk) ∈ U , then (αk, βk) ∈ B2 if and only if (αk+1, βk+1) =
f(αk, βk) ∈ B1. In other words, B2 is the inverse image of B1 in U under mapping f .
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Figure 2.4: Upper boundaries of B1, B2, and RU .

The behavior of f is illustrated in the movement from point 0 to point 1 in Fig. 2.3(b).
The set B2 is identified in Fig. 2.3(a), lying directly above B1.

Now for an integer m > 1, recursively define Bm to be the inverse image of Bm−1

under mapping f , denoted by Bm. It is easy to see that

Bm := {(α, β) ∈ U|(1− α)2(m−1)

+ β2(m−1) ≥ 1 and (1− α)2m + β2m ≤ 1}.

Notice that U =
⋃∞
m=1Bm. Hence, for any (α0, β0) ∈ U , there exists m such that

(α0, β0) ∈ Bm. This gives a complete description of how the dynamics of the system
behaves in the upper triangular region U . For instance, if the initial pair (α0, β0) lies
in Bm, then the system evolves in the order

Bm → Bm−1 → . . .→ B2 → B1.

Therefore, the system will enter B1 after m− 1 levels of fusion; i.e., (αm−1, βm−1) ∈
B1.

As the next stage, we consider the behavior of the system after it enters B1. The
image of B1 under mapping f , denoted by RL, is (see Fig. 2.3(a))

RL := {(α, β) ∈ L|
√

1− α+
√
β ≥ 1}.

We can define the reflection of Bm about the line β = α in the similar way for all
m. Similarly, we denote by RU the reflection of RL about the line β = α; i.e.,

RU := {(α, β) ∈ U|
√

1− β +
√
α ≥ 1}.

We denote the region RU ∪RL by R. We will show that R is an invariant region in the
sense that once the dynamic system enters R, it stays there. For example, as shown in
Fig. 2.3(b), the system after point 1 stays inside R.
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Proposition 2.2.1. If (αk0 , βk0) ∈ R for some k0, then (αk, βk) ∈ R for all k ≥ k0.

Proof. First we show that B1 ⊂ RU ⊂ B1 ∪B2.

Notice that B1, RU , and B1∪B2 share the same lower boundary β = α. It suffices
to show that the upper boundary of RU lies between the upper boundary of B2 and that
of B1 (see Fig. 2.4).

First, we show that the upper boundary ofRU lies above the upper boundary ofB1.
We have

1− (1−√α)2 ≥
√

1− (1− α)2

⇐⇒ 2
√
α− α ≥

√
2α− α2

⇐⇒ α2 + α− 2α3/2 ≥ 0,

which holds for all α in [0, 1). Thus, B1 ⊂ RU .

Now we prove that the upper boundary of RU lies below that of B2. We have

(1− (1− α)4)1/4 ≥ 1− (1−√α)2

⇐⇒ 1− (1− α)4 ≥ (2
√
α− α)4

⇐⇒ −2(
√
α− 1)2α(−α3/2 + α(

√
α− 1)

+ 4
√
α(
√
α− 1) + α− 2) ≥ 0,

which holds for all α in [0, 1) as well. Hence, RU ⊂ B1 ∪B2.

Without loss of generality, we assume that (αk0 , βk0) ∈ RU . It means that (αk0 , βk0) ∈
B1 or (αk0 , βk0) ∈ B2∩RU . If (αk0 , βk0) ∈ B1, then the next pair (αk0+1, βk0+1) lies
inRL. If (αk0 , βk0) ∈ B2∩RU , then (αk0+1, βk0+1) ∈ B1 ⊂ RU and (αk0+2, βk0+2) ∈
RL. By symmetry considerations, it follows that the system stays inside R for all
k ≥ k0.

So far we have studied the precise evolution of the sequence {(αk, βk)} in the
(α, β) plane. In the next section, we will consider the step-wise reduction in the total
error probability and deduce upper and lower bounds for it.

2.3 Error Probability Bounds

In this section, we will first derive bounds for the total error probability in the case of
equally likely hypotheses, where the fusion rule is the likelihood-ratio test with unit
threshold. Then we will deduce bounds for the total error probability in the case where
the prior probabilities are unequal but the fusion rule remains the same.

The total error probability for a node with (αk, βk) is (αk + βk)/2 in the case of
equal prior probabilities. Let Lk = αk + βk, namely, twice the total error probability.
Analysis of the total error probability results from consideration of the sequence {Lk}.
In fact, we will derive bounds on logL−1

k , whose growth rate is related to the rate of
convergence of Lk to 0. We divide our analysis into two parts:

9



I We will study the shrinkage of the total error probability as the system propagates
from Bm to B1;

II We will study the shrinkage of the total error probability after the system enters
B1.

2.3.1 Case I: analysis as the system propagates from Bm to B1

Suppose that the initial state (α0, β0) lies in Bm, where m is a positive integer and
m 6= 1. From the previous analysis, (αm−1, βm−1) ∈ B1. In this section, we study
the rate of reduction of the total error probability as the system propagates from Bm to
B1.

Proposition 2.3.1. Suppose that (αk, βk) ∈ Bm, where m is a positive integer and
m 6= 1. Then,

1 ≤ Lk+1

L2
k

≤ 2.

The proof is given in Appendix A. Fig. 2.5 shows a plot of values of Lk+1/L
2
k in⋃∞

m=2Bm. With the recursive relation given in Proposition 2.3.1, we can derive the
following bounds for logL−1

k .

0 0.1 0.2 0.3 0.4
0.5

1

1.5

2

2.5

αk

L
k
+
1
/
L
2 k

Figure 2.5: Ratio Lk+1/L
2
k in

⋃∞
m=2Bm. Each line depicts the ratio versus αk for a

fixed βk.

Proposition 2.3.2. Suppose that (α0, β0) ∈ Bm, where m is a positive integer and
m 6= 1. Then, for k = 1, 2, . . . ,m− 1,

2k
(
logL−1

0 − 1
)
≤ logL−1

k ≤ 2k logL−1
0 .

The proof is given in Appendix B. Suppose that the balanced binary relay tree has
N leaf nodes. Then, the height of the fusion center is logN . For convenience, let
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PN = LlogN be (twice) the total error probability at the fusion center. Substituting
k = logN into Proposition 2.3.2, we get the following result.

Corollary 2.3.1. Suppose that (α0, β0) ∈ Bm, where m is a positive integer and
m 6= 1. If logN < m, then

N
(
logL−1

0 − 1
)
≤ logP−1

N ≤ N logL−1
0 .

Notice that the lower bound of logP−1
N is useful only if L0 < 1/2. Next we derive

a lower bound for logP−1
N which is useful for all L0 ∈ (0, 1).

Proposition 2.3.3. Suppose that (αk, βk) ∈ Bm, where m is a positive integer and
m 6= 1. Then,

Lk+1

L
√

2
k

≤ 1.

The proof is given in Appendix C. Fig. 2.6 shows a plot of values of Lk+1/L
√

2
k in⋃∞

m=2Bm. With the inequality given in Proposition 2.3.3, we can derive a new lower
bound for logP−1

N , which is useful for all L0 ∈ (0, 1).

0 0.1 0.2 0.3 0.4
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0.4
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/
L
√
2

k

Figure 2.6: Ratio Lk+2/L
√

2
k in

⋃∞
m=2Bm. Each line depicts the ratio versus αk for a

fixed βk.

Proposition 2.3.4. Suppose that (α0, β0) ∈ Bm, where m is a positive integer and
m 6= 1. If logN < m, then

logP−1
N ≥

√
N logL−1

0 .

The proof is given in Appendix D.
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2.3.2 Case II: analysis when the system stays inside R

We have derived error probability bounds up until the point where the trajectory of
the system enters B1. In this section, we consider the total error probability reduction
from that point on. First we will establish error probability bounds for even-height
trees. Then we will deduce error probability bounds for odd-height trees.

Error probability bounds for even-height trees

If (α0, β0) ∈ Bm for some m 6= 1, then (αm−1, βm−1) ∈ B1. The system afterward
stays inside the invariant region R (but not necessarily inside B1). Hence, the decay
rate of the total error probability in the invariant region R determines the asymptotic
decay rate. Without loss of generality, we assume that (α0, β0) lies in the invariant
region R. In contrast to Proposition 2.3.1, which bounds the ratio Lk+1/L

2
k, we will

bound the ratio Lk+2/L
2
k associated with taking two steps.

Proposition 2.3.5. Suppose that (αk, βk) ∈ R. Then,

1 ≤ Lk+2

L2
k

≤ 2.

The proof is given in Appendix E. Fig. 2.7(a) and Fig. 2.7(b) show plots of values
of Lk+2/L

2
k in B1 and B2 ∩RU , respectively.
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Figure 2.7: (a) Ratio Lk+2/L
2
k in B1. (b) Ratio Lk+2/L

2
k in B2 ∩ RU . Each line

depicts the ratio versus αk for a fixed βk.

Proposition 2.3.5 gives bounds on the relationship between Lk and Lk+2 in the
invariant region R. Hence, in the special case of trees with even height, that is, when
logN is an even integer, it is easy to bound PN in terms of L0. In fact, we will bound
logP−1

N which in turn provides bounds for PN .
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Theorem 2.3.1. Suppose that (α0, β0) ∈ R and logN is even. Then,
√
N
(
logL−1

0 − 1
)
≤ logP−1

N ≤
√
N logL−1

0 .

Proof. If (α0, β0) ∈ R, then we have (αk, βk) ∈ R for k = 0, 1, . . . , logN − 2. From
Proposition 2.3.5, we have

Lk+2 = akL
2
k

for k = 0, 2, . . . , logN − 2 and some ak ∈ [1, 2]. Therefore, for k = 2, 4, . . . , logN ,
we have

Lk = a(k−2)/2 · a2
(k−4)/2 . . . a

2(k−2)/2

0 L2k/2

0 ,

where ai ∈ [1, 2] for each i. Substituting k = logN , we have

PN = a(k−2)/2 · a2
(k−4)/2 . . . a

2(k−2)/2

0 L2log
√
N

0

= a(k−2)/2 · a2
(k−4)/2 . . . a

√
N/2

0 L
√
N

0 .

Hence,

logP−1
N =− log a(k−2)/2 − 2 log a(k−4)/2 − . . .

−
√
N

2
log a0 +

√
N logL−1

0 .

Notice that logL−1
0 > 0 and 0 ≤ log ai ≤ 1 for each i. Thus,

logP−1
N ≤

√
N logL−1

0 .

Finally,

logP−1
N ≥ −1− 2− . . .−

√
N

2
+
√
N logL−1

0

≥ −
√
N +

√
N logL−1

0 =
√
N
(
logL−1

0 − 1
)
.

Notice the lower bound for logP−1
N in Theorem 2.3.1 is useful only if L0 < 1/2.

We further provide a lower bound for logP−1
N which is useful for all L0 ∈ (0, 1).

Proposition 2.3.6. Suppose that (αk, βk) ∈ R. Then,

Lk+2

L
√

2
k

≤ 1.

The proof is given in Appendix F. Fig. 2.8(a) and Fig. 2.8(b) show plots of the ratio
inside B1 and B2 ∩RU , respectively. Next we derive a new lower bound for logP−1

N .

Proposition 2.3.7. Suppose that (α0, β0) ∈ R and logN is even. Then,

logP−1
N ≥ 4

√
N logL−1

0 .

The proof is given in Appendix G.
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Figure 2.8: (a) Ratio Lk+2/L
√

2
k in B1. (b) Ratio Lk+2/L

√
2

k in B2 ∩ RU . Each line
depicts the ratio versus αk for a fixed βk.

Error probability bounds for odd-height trees

Next we explore the case of trees with odd height; i.e., logN is an odd integer. Assume
that (α0, β0) lies in the invariant region R. First, we will establish general bounds for
odd-height trees. Then we deduce bounds for the case where there exists (αm, βm) ∈
B2 ∩RU for some m ∈ {0, 1, . . . , logN − 2}.

For odd-height trees, we need to know how much the total error probability is
reduced by moving up one level in the tree.

Proposition 2.3.8. Suppose that (αk, βk) ∈ U . Then,

1 ≤ Lk+1

L2
k

and
Lk+1

Lk
≤ 1.

The proof is given in Appendix H. Fig. 2.9(a) and Fig. 2.9(b) show plots of values
of Lk+1/L

2
k and Lk+1/Lk in U .

Using Propositions 2.3.5 and 2.3.8, we are about to calculate error probability
bounds for odd-height trees as follows.

Theorem 2.3.2. Suppose that (α0, β0) ∈ R and logN is odd. Then√
N

2

(
logL−1

0 − 1
)
≤ logP−1

N ≤
√

2N logL−1
0 .

The proof is given in Appendix I. Next we consider the special case where there
exists m ∈ {0, 1, . . . , logN − 2} such that (αm, βm) ∈ B2 ∩RU .
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Figure 2.9: (a) Ratio Lk+1/L
2
k in U . (b) Ratio Lk+1/Lk in U . Each line depicts the

ratio versus αk for a fixed βk.

Proposition 2.3.9. Suppose that (αk, βk) ∈ B1 and (αk−1, βk−1) ∈ B2 ∩RU . Then,

1

2
≤ Lk+1

Lk
≤ 1.

The proof is given in Appendix J. Fig. 2.10 shows a plot of values of Lk+1/Lk in
this case.

We have proved in Proposition 2.3.5 that if (αk, βk) is in B2 ∩ RU , then the ratio
Lk+2/L

2
k ∈ [1, 2]. However, if we analyze each level of fusion, it can be seen that the

total error probability decreases exponentially fast from B2 ∩ RU to B1 (Proposition
2.3.1). Proposition 2.3.9 tells us that the fusion from B1 to RL is a bad step, which
does not contribute significantly in decreasing the total error probability.

We can now provide bounds for the total error probability at the fusion center.

Theorem 2.3.3. Suppose that (α0, β0) ∈ R, logN is an odd integer, and there exists
m ∈ {0, 1, . . . , logN − 2} such that (αm, βm) ∈ B2 ∩RU .

If m is even, then
√

2N
(
logL−1

0 − 1
)
≤ logP−1

N ≤
√

2N logL−1
0 .

If m is odd, then√
N

2

(
logL−1

0 − 1
)
≤ logP−1

N ≤
√
N

2
logL−1

0 +

√
N

2m+2
.

The proof is given in Appendix K. Finally, by combining all of the analysis above
for step-wise reduction of the total error probability, we can write general bounds when
the initial error probability pair (α0, β0) lies inside Bm, where m 6= 1.
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Figure 2.10: Ratio Lk+1/Lk in the region f(B2 ∪ RU ). Each line depicts the ratio
versus α for a fixed β.

Theorem 2.3.4. Suppose that (α0, β0) ∈ Bm, where m is an integer and m 6= 1.

If logN < m, then (Corollary 2.3.1)

N
(
logL−1

0 − 1
)
≤ logP−1

N ≤ N logL−1
0 .

If logN ≥ m, and logN −m is odd, then
√

2m−1N
(
logL−1

0 − 1
)
≤ logP−1

N ≤
√

2m−1N logL−1
0 .

If logN ≥ m, and logN −m is even, then
√

2m−2N
(
logL−1

0 − 1
)
≤ logP−1

N ≤
√

2mN logL−1
0 .

The proof uses similar arguments as that of Theorem 2.3.1 and it is provided in
Appendix L.

Remark: Notice again that the lower bounds for logP−1
N above are useful only if

L0 < 1/2. However, similar to Proposition 2.3.7, we can derive a lower bound for
logP−1

N , which is useful for all L0 ∈ (0, 1). It turns out that this lower bound differs
from that in Proposition 2.3.7 by a constant term. Therefore, it is omitted.

2.3.3 Invariant region in B1

Consider the region {(α, β) ∈ U|β ≤ √α and β ≥ 1 − (1 − α)2}, which is a subset
of B1 (see Fig. 2.11(a)). Denote the union of this region and its reflection with respect
to β = α by S. It turns out that S is also invariant.
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Proposition 2.3.10. If (αk0 , βk0) ∈ S, then (αk, βk) ∈ S for all k ≥ k0.

The proof is given in Appendix M. Fig. 2.11(b) shows a single trajectory of the
dynamic system which stays inside S.
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Figure 2.11: (a) Invariant region S (between dashed lines) lies insideB1 (between solid
lines). (b) A trajectory of the system which stays inside S.

We have given bounds for PN , which is (twice) the total error probability. It turns
out that for the case where (α0, β0) ∈ S, we can bound the Type I and Type II errors
individually.

Proposition 2.3.11. If (αk, βk) ∈ S, then

1 ≤ αk+2

α2
k

≤ 4

and
1 ≤ βk+2

β2
k

≤ 4.

The proof is ommitted.

Remark: It is easy to see that as long as the system stays insideB1, then in a similar
vein, these ratios αk+2/α

2
k and βk+2/β

2
k are lower bounded by 1 and upper bounded

by a constant. But recall that B1 is not an invariant region. Thus, it is more interesting
to consider S.

Proofs are omitted because they are along similar lines to those in the other proofs.
As before, these inequalities give rise to bounds on sequences {αk} and {βk}. For
example, for {αk}, we have the following.

Corollary 2.3.2. If (α0, β0) ∈ S and k is even, then

2k/2
(
logα−1

0 − 2
)
≤ logα−1

k ≤ 2k/2 logα−1
0 .
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2.3.4 Unequal likely hypotheses

In this section we consider the situation of unequally likely hypotheses; that is, P (H0) 6=
P (H1). Suppose that the fusion rule is as before: the likelihood ratio test with unit
threshold. The resulting total error probability for the nodes at level k is equal to
L̂k = P (H0)αk + P (H1)βk, and the total error probability at the fusion center is
P̂N = L̂logN . We are interested in bounds for P̂N .

Because the fusion rule is the same as before, the previous bounds for logL−1
k

hold. From these bounds, we now derive bounds for P̂N . Without loss of generality,
we assume that P (H0) ≤ P (H1). We obtain the following:

P (H0)Lk ≤ P (H0)αk + P (H1)βk ≤ P (H1)Lk.

From these inequalities, we can derive upper and lower bounds for log P̂−1
N . For ex-

ample, in the case where (α0, β0) ∈ R and logN is even (even-height tree), from
Theorem 2.3.1, we have

√
N(logL−1

0 − 1) ≤ logP−1
N ≤

√
N logL−1

0 ,

from which we obtain
√
N(logL−1

0 − 1) + logP (H1)−1 ≤ log P̂−1
N ≤

√
N logL−1

0 + logP (H0)−1.

We have derived error probability bounds for balanced binary relay trees under
several scenarios. In the next section, we will use these bounds to study the asymptotic
rate of convergence.

2.4 Asymptotic Rates

The asymptotic decay rate of the total error probability with respect to N is considered
while the performance of the sensors is constant is the first problem to be tackled. Then
we allow the sensors to be asymptotically crummy, in the sense that α0 + β0 → 1. We
prove that the total error probability still converges to 0 under certain conditions. Last,
we will compare the detection performance by applying different strategies in balanced
binary relay trees.

In this section, we use the following notation: for positive functions f and g defined
on the positive integers, if there exist positive constants c1 and c2 such that c1g(N) ≤
f(N) ≤ c2g(N) for all sufficiently large N , then we write f(N) = Θ(g(N)). For
N →∞, the notation f(N) ∼ g(N) means that f(N)/g(N)→ 1, f(N) = ω(g(N))
that f(N)/g(N)→∞, and f(N) = o(g(N)) that f(N)/g(N)→ 0.

2.4.1 Asymptotic decay rate

Notice that asN becomes large, the sequence {(αk, βk)} will eventually move into the
invariant region R at some level and stays inside from that point. Therefore, it suffices
to consider the decay rate in the invariant region R. Because error probability bounds
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for trees with odd height differ from those of the even-height tree by a constant term,
without loss of generality, we will only consider trees with even height.

Proposition 2.4.1. If L0 = α0 + β0 is fixed, then

logP−1
N = Θ(

√
N).

Proof. If L0 = α0 + β0 is fixed, then by Proposition 2.3.7 we immediately see that
PN → 0 as N → ∞ (logP−1

N → ∞) and there exists a finite k such that Lk < 1/2.
To analyze the asymptotic rate, we may assume that L0 < 1/2. In this case, the bounds
in Theorem 2.3.1 show that

logP−1
N = Θ(

√
N).

This implies that the convergence of the total error probability is sub-exponential;
more precisely, the exponent is essentially

√
N .

In the special case where (α0, β0) ∈ S, the Type I and Type II error probabili-
ties decay to 0 with exponent

√
N individually. Moreover, it is easy to show that the

exponent is still
√
N even if the prior probabilities are unequal.

Given L0 ∈ (0, 1) and ε ∈ (0, 1), suppose that we wish to determine how many
sensors we need to have so that PN ≤ ε. If L0 < 1/2, then the solution is simply to
find an N (e.g., the smallest) satisfying the inequality

√
N
(
logL−1

0 − 1
)
≥ − log ε.

In consequence, we have

N ≥ ((logL−1
0 − 1) log ε)2.

The smallest N grows like Θ((log ε)2) (cf., [32], in which the smallest N has a larger
growth rate). If L0 ≥ 1/2, then by Proposition 2.3.7 we can deduce how many levels
k are required so that Lk < 1/2:

4
√
N logL−1

0 > − log
1

2
= 1.

Therefore, N has to satisfy
N > (logL−1

0 )−4,

which implies that
k > 4 log(logL0

−1)−1.

Combining with the above analysis for the case where L0 < 1/2, we can then deter-
mine the number of sensors required so that PN ≤ ε.
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2.4.2 Crummy sensors

In this part we allow the total error probability of each sensor, denoted by L(N)
0 , to

depend on N but still to be constant across sensors.

If L(N)
0 is bounded by some constant L ∈ (0, 1) for all N , then clearly PN → 0. It

is more interesting to consider L(N)
0 → 1, which means that sensors are asymptotically

crummy.

Proposition 2.4.2. Suppose that L(N)
0 = 1− ηN with ηN → 0.

(1) If ηN ≥ c1/ 4
√
N , then PN ≤ e−c1 .

(2) If ηN = ω(1/ 4
√
N), then PN → 0.

(3) If ηN ≤ c2/
√
N , then PN ≥ e−c2 .

(4) If ηN = o(1/
√
N), then PN → 1.

Proof. First we consider part (1). We have

4
√
N log(L

(N)
0 )−1 = − 4

√
N log(1− ηN ).

But as x→ 0, − log(1− x) ∼ x/ ln(2), from which we obtain

4
√
N log(L

(N)
0 )−1 ∼ ηN 4

√
N/ ln(2).

From Proposition 2.3.7, it is easy to see that if we have ηN ≥ c1/
4
√
N , then for suffi-

ciently large N we obtain

logP−1
N ≥ 4

√
N log(L

(N)
0 )−1 ≥ c1/ ln(2),

that is,
PN ≤ 2−c1/ ln(2) = e−c1 .

Moreover, if ηN
4
√
N → ∞, that is, ηN = ω(1/ 4

√
N), then PN → 0. This finishes the

proof for part (2).

Next we consider parts (3) and (4). We have
√
N log(L

(N)
0 )−1 = −

√
N log(1− ηN ),

from which we obtain
√
N log(L

(N)
0 )−1 ∼ ηN

√
N/ ln(2).

From Theorem 2.3.1, it is easy to see that if we have ηN ≤ c2/
√
N , then for sufficiently

large N we obtain

logP−1
N ≤

√
N log(L

(N)
0 )−1 ≤ c2/ ln(2),

that is,
PN ≥ 2−c2/ ln(2) = e−c2 .

Moreover, if ηN
√
N →∞, that is, ηN = o(1/

√
N), then PN → 1.
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Using part (3) of the above proposition, we derive a necessary condition for PN →
0.

Corollary 2.4.1. Suppose that L(N)
0 = 1 − ηN with ηN → 0. Then, PN → 0 implies

that ηN = ω(1/
√
N).

2.4.3 Fixed point problem

We find the following mathmatical problem during our research. Let α ∈ [0, 1] be
given. Define a sequence of numbers γk by

γk =

√
1−

√
1− · · ·

√
1− (1− · · · (1− (1− α)2)2 · · · )2

where the number of nested squares and square roots is k. So, for example, γ0 = α,
γ1 =

√
1− (1− α)2, and so on.

Define θ = (3−
√

5)/2, which is simply the golden ratio minus one, or one minus
the reciprocal of the golden ratio. In other words, the following expressions are all
equal to the golden ratio: 2− θ, 1/(1− θ), and 1/

√
θ.

Claim: For α ∈ [0, θ],

• the odd subsequence of {γk} converges from above to
√
α, and

• the even subsequence of {γk} converges from below to 1− (1− α)2.

For α ∈ [θ, 1],

• the odd subsequence of {γk} converges from above to 1− (1− α)2, and

• the even subsequence of {γk} converges from below to
√
α.

Equivalently, for each α ∈ [0, 1], the odd subsequence convergences from above
to max(

√
α, 1 − (1 − α)2), and the even subsequence convergences from below to

min(
√
α, 1− (1− α)2).

We have no direct proof of this claims. However, what we can easily show is that
the odd subsequence is monotone decreasing and bounded below by max(

√
α, 1 −

(1 − α)2), and that the even subsequence is monotone increasing and bounded above
by min(

√
α, 1− (1− α)2).

Functional Representation of Problem

Define the function rk : [0, 1] → [0, 1] such that γk = rk(α). Then, it is apparent that
rk satisfies the recursion

rk+1(α) =
√

1− rk((1− α)2), α ∈ [0, 1], (2.3)
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with r0(α) = α. We can similarly write a recursion relating rk+2 to rk:

rk+2(α) =

√
1−

√
1− rk((1− (1− α)2)2), α ∈ [0, 1]. (2.4)

Starting with r0(α) = α gives rise to the even subsequence, and starting with r1(α) =√
1− (1− α)2 gives rise to the odd subsequence. The convergence claim before

amounts to pointwise convergence claims about these subsequences of functions. But
since we have a recursion for them, they can only converge to fixed points of the recur-
sion (2.4).

More specifically, r : [0, 1] → [0, 1] is a fixed point of the first recursion (2.3) if
and only if

r(α) =
√

1− r((1− α)2), α ∈ [0, 1]. (2.5)

With some algebraic manipuations, we can rewrite this as

r(α) = 1− r(1−√α)2, α ∈ [0, 1]. (2.6)

Similarly, for a fixed point of (2.4),

r(α) =

√
1−

√
1− r((1− (1− α)2)2), α ∈ [0, 1]. (2.7)

If we can show that the two desired functions max(
√
α, 1−(1−α)2) and min(

√
α, 1−

(1− α)2) are the only “legitimate” solutions of (2.7), then we are done.

Write the recursion for {rk} as rk+1 = Φrk, where Φ is the operator defined
by (2.3). The recursion for the even and odd subsequences is rk+2 = Φ2rk, where
Φ2 means Φ composed with itself.When we speak of a fixed point of Φ, we mean a
function r : [0, 1] → [0, 1] such that r = Φr. Two functions ρ1 and ρ2 constitute an
orbit of period 2 of Φ if ρ1 = Φρ2 and ρ2 = Φρ1.

Some observations:

• Any fixed point of Φ is also a fixed point of Φ2. Moreover, two functions that
form a an orbit of Φ of period 2 are both fixed points of Φ2.

• Conversely, any fixed point of Φ2 is either a fixed point or a point on an orbit of
Φ of period 2. For example, the constant functions 0 and 1 are fixed points of
Φ2, but they are not fixed points of Φ. Instead, they constitute an orbit of period
2.

• The functions on [0, 1] given by
√
α and 1− (1− α)2 are both fixed points of Φ

(and hence also Φ2). Moreover, the constant function
√
θ (which is also equal to

1− θ, 1− (1− θ)2, and (1/θ)− 2) is a fixed point of Φ (and hence also Φ2).

• Fixing α = 0 in (2.7), we see that r(0) can only take values 0, 1, or
√
θ. The

same can be said for r(1) and r(θ). Any fixed point must satisfy these constraints
at α = 0, 1, and θ.

• Φ maps a function on [0, θ] to a function on [θ, 1], and vice versa. So if ρ1

and ρ2 are fixed points of Φ, then the two functions given by ρ1(α)1[0,θ](α) +
ρ2(α)1(θ,1](α) and ρ2(α)1[0,θ](α) + ρ1(α)1(θ,1](α) constitute an orbit of Φ of
period 2. These are functions obtained from ρ1 and ρ2 by “swapping” them on
the interval [0, θ].
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• Similarly, if ρ1 and ρ2 constitute an orbit of Φ, then the two functions given by
ρ1(α)1[0,θ](α) + ρ2(α)1(θ,1](α) and ρ2(α)1[0,θ](α) + ρ1(α)1(θ,1](α) are both
fixed points of Φ. For example, both functions 1[0,θ] and 1(θ,1] are fixed points
of Φ.

• Φ2 maps a function on [0, θ] to a function on [0, θ] (and similarly on [θ, 1]).
Hence, for Φ2, we can consider the intervals [0, θ] and [θ, 1] separately and
independently. In particular, if ρ1 and ρ2 are fixed points of Φ2, then so are
the functions given by ρ1(α)1[0,θ](α) + ρ2(α)1(θ,1](α) and ρ2(α)1[0,θ](α) +
ρ1(α)1(θ,1](α).

• Finally, given two functions ρ1 and ρ2 that either are both fixed points or con-
stitute an orbit of period 2 of Φ, we can construct two fixed points of Φ2:
ρ1(α)1[0,θ](α) + ρ2(α)1(θ,1](α) and ρ2(α)1[0,θ](α) + ρ1(α)1(θ,1](α).

The two fixed points of Φ2 of interest in our original claim are
√
α1[0,θ](α) +

(1− (1−α)2))1(θ,1](α) and (1− (1−α)2))1(θ,1](α) +
√
α1[0,θ](α), which are

max(
√
α, 1− (1− α)2) and min(

√
α, 1− (1− α)2), respectively.

Other Fixed Points

Define the function F : [0, 1] → [0, 1] by F (x) = 1 − x (the “flip” function), and
the function S : [0, 1] → [0, 1] by S(x) = x2 (the “square” function). Then, for
r : [0, 1] → [0, 1], the function Φr can be written as S−1FrSF (in operator notation,
so that SF , say, means S composed with F ). Hence, r is a fixed point of Φ if and only
if

r = S−1FrSF, (2.8)

which corresponds to (2.5). Algebraic manipulations are much easier using this nota-
tion. For example, note that F−1 = F , from which we can easily derive

r = FSrFS−1, (2.9)

which corresponds to (2.6). The two-step version (2.7) is also easy to write:

r = (S−1F )2r(SF )2, (2.10)

Not that the two functions
√
α and 1 − (1 − α)2 in this new notation are S−1 and

FSF , respectively.

To simplify the calculations, substitute σ = rS in (2.8). Then,

σ(S−1F ) = (S−1F )σ.

In other words, r = σS−1 satisfies (2.8) if and only if σ commutes with (S−1F ). Note
that S−1F (

√
θ) = S−1F (1 − θ) =

√
θ, which shows that the constant function

√
θ

commutes with (S−1F ). It is clear that any power of (S−1F ) commutes with itself.
From this, we generate an infinite family of such fixed points r:

r = (S−1F )nS−1, n ∈ Z. (2.11)

The two special functions S−1 and FSF identified before are special cases with n = 0
and n = −2, respectively.

23



0 0.5 1
0

0.2

0.4

0.6

0.8

1

α

γ
(α
)

Figure 2.12: Functions in (2.11).

We could similarly make the substitution τ = Fr in (2.8), leading to τ(SF ) =
(SF )τ , This gives rise to the family

r = F (SF )m, m ∈ Z.

But note that this family reduces to the previous one by substituting m = −n − 1.
Similarly, working with (2.9) does not generate any new fixed points.

If we consider the two-step version, we arrive at the conclusion that r = σS−1

satisfies (2.10) if and only if σ commutes with (S−1F )2. Naturally, the functions
in (2.11) and the constant function

√
θ also satisfy (2.10). Moreover, because 0 =

(S−1F )2(0) and 1 = (S−1F )2(1), the constant functions 0 and 1 also clearly satisfy
(2.10).

Figure 2.12 shows plots of several functions of interest on [0, 1]. The blue and
green plots are the functions in (2.11) for nonnegative and negative n, respectively. We
have pointed out the two cases n = 0 (i.e.,

√
α) and n = −2 (i.e., 1 − (1 − α)2)

using solid lines (in contrast to the other dashed lines). The solid black vertical line is
at α = θ. The solid black horizonal line is the constant function

√
θ. Notice that all

the blue and green plots intersect at (θ,
√
θ). The plots in Figure 2.12 depict a large

family of fixed points of (2.7), recalling that we can combine blue and green plots on
the intervals [0, θ] and (θ, 1].

Figure 2.13 overlays on Figure 2.12 four red plots, depicting the first four iterations
k = 1, . . . , 4 of (2.3). The two red plots above

√
α in the region [0, θ] are the odd

iterates (k = 1, 3) and the two red plots below 1− (1− α)2 in the region [0, θ] are the
even iterates (k = 2, 4). Note that the solid blue/green plots are the only ones that lie
between the red plots. Recall that odd subsequence of (2.7) is monotone decreasing and
bounded below by max(

√
α, 1−(1−α)2), and that the even subsequence is monotone

increasing and bounded above by min(
√
α, 1− (1− α)2). Hence, among all the fixed

points in Figure 2.12, only these two are legitimate fixed points of (2.7).

Are there other fixed points of (2.7)? Recall that any fixed point r = σS−1 is
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Figure 2.13: Functions in (2.11) together with subsequences of (2.3) in red.

such that σ commutes with (S−1F )2. We have pointed out that any integer power of
(S−1F ) will do the job.

Are there other functions that commute with (S−1F )2? One candidate is this:
Suppose that (S−1F )2 has a commutable factorization, which means that (S−1F )2 =
AB = BA for functions A : [0, 1] → [0, 1] and B : [0, 1] → [0, 1]. Then, any integer
power of A and B commutes with (S−1F )2. Clearly A = B = S−1F is such an
example. But are there others?

2.4.4 Comparison of simulation results

We end this section by comparing the quantitative behavior of the unit-threshold likelihood-
ratio rule with that of other fusion rules of interest. First, we define two particular
fusion rules that can be applied at an individual node:

• OR rule: the parent node decides 0 if and only if both the child nodes send 0;

• AND rule: the parent node decides 1 if and only if both the child nodes send 1.

Notice that the unit-threshold likelihood-ratio rule reduces to either the AND rule
or the OR rule, depending on the values of the Type I and Type II error probabilities
at the particular level of the tree. For our quantitative comparison, we consider three
system-wide fusion strategies that we will compare with the case that uses the unit-
threshold likelihood-ratio rule at every node:

• OR strategy: Every fusion uses the OR rule;

• AND strategy: Every fusion uses the AND rule;
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Figure 2.14: Total error probability plots. Dashed line: centralized parallel fusion
strategy. Solid line: unit-threshold likelihood-ratio rule for balanced binary relay tree.
Dotted line with ‘�’ marker: OR strategy. Dotted line with ‘+’ marker: AND strategy.
Dash-dot line: RAND strategy.

• RAND strategy: At each level of the tree, we randomly pick either the AND rule
or the OR rule with equal probability, and independently over levels, and apply
that rule to all the nodes at that level.

In Fig. 2.14, we show plots of the total error probability as a function of N for the tree
that uses the unit-threshold likelihood-ratio rule at every node (the one analyzed in this
report). We also plot the total error probabilities for the AND and OR strategies, as well
as the average total error probability over 100 independent trials of the RAND strategy.
For comparison purposes, we also plot the error probability curve of the centralized
parallel fusion strategy.

We can see from Fig. 2.14 that the total error probability for the centralized parallel
strategy decays to 0 faster than that of the binary relay tree that uses the unit-threshold
likelihood-ratio rule at every node. This is not surprising, because the former is known
to be exponential, as discussed earlier, while the latter is sub-exponential with exponent√
N , as shown in this report. The AND and OR strategies both result in total error

probabilities converging monotonically to 1/2, while the RAND strategy results in an
average total error probability that does not decrease much with N .

We have studied the detection performance of balanced binary relay trees. We
precisely describe the evolution of error probabilities in the (α, β) plane as we move
up the tree. This allows us to deduce error probability bounds at the fusion center as
functions of N under several different scenarios. These bounds show that the total
error probability converges to 0 sub-exponentially, with an exponent that is essentially√
N . In addition, we allow all sensors to be asymptotically crummy, in which case we

deduce the necessary and sufficient conditions for the total error probability to converge
to 0. All our results apply not only to the fusion center, but also to any other node in
the tree network. In other words, we can similarly analyze a sub-tree inside the original
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tree network.
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Chapter 3

Sensor Failures and
Communication Link Failures

In this Chapter, we further study the detection performance of balanced binary relay
trees with sensor failures and communication link failures build on the formulations in
Chapter II.

3.1 Sensor Failures

3.1.1 Problem formulation

We keep all the notations and definations defined in Chapter II. Moreover for the sensor
failure case, we assume that all sensors have identical failure probability q0. Assuming
equal prior probabilities, we use the likelihood-ratio test [41] when fusing binary mes-
sages at intermediate relay nodes and the fusion center. Consider the simple problem
of fusing binary messages passed to a node by its two immediate child nodes. Assume
that the two child nodes have identical Type I error probability α, identical Type II
error probability β, and identical failure probability q.

Denote the Type I error, Type II error, and failure probabilities after the fusion by
(α′, β′, q′). This parent node fails to provide any message to the node at the next level
if and only if both its child nodes fail to forward any message. Hence, we have

q′ = q2. (3.1)

If one of the child nodes fails and the other one sends its message to the parent
node, then Type I and Type II error probabilities do not change since the parent node
receives only one binary message. The probability of this event is 2q(1− q), in which
case we have

(α′, β′) = (α, β). (3.2)
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Figure 3.1: A balanced binary relay tree with height k. Circles represent sensors mak-
ing measurements. Diamonds represent relay nodes which fuse binary messages. The
rectangle at the root represents the fusion center making an overall decision.

If both child nodes send their messages to the parent node, then the scenario is the
same as that in [32] and [33]. The probability of this event is (1 − q)2, in which case
we have

(α′, β′) =

 (1− (1− α)2, β2), α ≤ β,

(α2, 1− (1− β)2), α > β.
(3.3)

Let ᾱ′ and β̄′ be the mean Type I and Type II error probabilities conditioned on the
event that at least one of these child nodes forwards its message to the parent node, i.e.,
the parent node has data. We have

(ᾱ′, β̄′, q′) = f(α, β, q) (3.4)

=


(

(1−q)(2α−α2)+2qα
1+q , (1−q)β2+2qβ

1+q , q2
)
, α ≤ β,

(
(1−q)α2+2qα

1+q , (1−q)(2β−β2)+2qβ
1+q , q2

)
, α > β.

(3.5)

Our assumption is that all sensors have the same error probabilities (α0, β0, q0).
Therefore by (3.5), all relay nodes at level 1 will have the same error probability triplet
(α1, β1, q1) = f(α0, β0, q0) (where α1 and β1 are the conditional mean error proba-
bilities). Similarly by (3.4), we can calculate error probability triplets for nodes at all
other levels. We have

(αk+1, βk+1, qk+1) = f(αk, βk, qk), k = 1, 2, . . . , (3.6)

where (αk, βk, qk) is the error probability triplet of nodes at the kth level of the tree.
Notice that if we let q0 = 0, then the recursive relation reduces to the recursion in [33].

29



The relation (3.6) allows us to consider (αk, βk, qk) as a discrete dynamic system.
For the case where q0 = 0, we have studied (See [33]) the precise evolution of the
sequence {(αk, βk)}, derived total error probability bounds as functions of N , and
established asymptotic decay rates. In this report, we will study the case where q0 6= 0.
We will derive total error probability bounds and determine the decay rate of the total
error probability.

To develop intuition, let us start by looking at the single trajectory shown in Fig.
3.2(a), starting at the initial state (α0, β0, q0). We observe that qk decreases very fast
to 0. In addition, as shown in Fig. 3.2(b), the trajectory approaches β = α at the
beginning. After (αk, βk) gets too close to β = α, the next pair (αk+1, βk+1) will be
repelled toward the other side of the line β = α. This behavior is similar to the scenario
where q = 0. For the case where q = 0, there exist an invariant region in the sense
that the system stays in the invariant region once the system enters it [33]. Is there
an invariant region for the case where q 6= 0? We answer this question by precisely
describing this invariant region in R3.
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Figure 3.2: (a) A typical trajectory of (αk, βk, qk) in the (α, β, q) coordinates. (b) The
trajectory in (a) projected onto the (α, β) plane.

3.1.2 The evolution of Type I, Type II, and sensor failure error
probabilities

The relation (3.5) is symmetric about the hyper-planes α + β = 1 and β = α. Thus,
it suffices to study the evolution of the dynamic system only in the region bounded by
α + β < 1, β ≥ α, and 0 ≤ q ≤ 1. Let U := {(α, β, q) ≥ 0|α + β < 1, β ≥
α, and 0 ≤ q ≤ 1} be this triangular prism. Similarly, define the complementary
triangular prism L := {(α, β, q) ≥ 0|α+ β < 1, β < α, and 0 ≤ q ≤ 1}.

First, we denote the following region by

B1 := {(α, β, q) ∈ U|β ≤ (−q+
√
q2 + (1− q)2(2α− α2) + 2q(1− q)α)/(1−q)}.

If (αk, βk, qk) ∈ B1, then the next pair (αk+1, βk+1, qk+1) jumps across the plane β =
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α away from (αk, βk, qk). More precisely, if (αk, βk, qk) ∈ U , then (αk, βk, qk) ∈ B1

if and only if (αk+1, βk+1, qk+1) ∈ L.

It is easy to see from (3.5) and (3.6) that, if we start with (α0, β0, q0) ∈ U \B1, then
before the system enters B1, we have αk+1 > αk and βk+1 < βk. Thus, the system
moves towards the β = α plane. Therefore, if the number of sensors N is sufficiently
large, then the system is guaranteed to enter B1.

Next we consider the behavior of the system after it entersB1. If (αk, βk, qk) ∈ B1,
we consider the position of the next pair (αk+1, βk+1, qk+1), i.e., consider the image
of B1 under f , denoted by RL. Similarly we denote the reflection of RL with respect
to β = α by RU . We find that

RU := {(α, β, q) ∈ U|β ≤ −α+ 2(
√
q2 + (1− q2)α− q)/(1− q)}.

The sets RU and B1 have some interesting properties. We denote the projection of
the upper boundary of RU and B1 onto the (α, β) plane for a fixed q by RqU and Bq1 ,
respectively. It is easy to see that if q1 ≤ q2, then Rq1U lies above Rq2U in the (α, β)
plane. Similarly, if q1 ≤ q2, then Bq11 lies above Bq21 in the (α, β) plane. Moreover,
we have the following proposition.

Proposition 3.1.1. B1 ⊂ RU .

Proof. B1 and RU share the same lower boundary β = α. Thus, it suffices to proof
that the upper boundary of B1 is below that of RU for a fixed q, i.e., RqU lies above Bq1
in the (α, β) plane.

The upper boundary of B1 is

β =
−q +

√
q2 + (1− q)2(2α− α2) + 2q(1− q)α

1− q .

The upper boundary of RU is

β = −α+ 2

√
q2 + (1− q2)α− q

1− q .

Notice that when q = 0, these boundaries reduce to the boundaries in [33]. We need to
prove the following:

−q +
√
q2 + (1− q)2(2α− α2) + 2q(1− q)α

1− q

≤ −α+ 2

√
q2 + (1− q2)α− q

1− q .

It suffices to show that √
q2 + (1− q)2(2α− α2) + 2q(1− q)α

≤ −α(1− q)− q + 2
√
q2 + (1− q2)α.

Squaring both sides and simplifying, we have

2
√
q2 + (1− q2)α(α(1− q) + q)

≤ 2(q2 + (1− q2)α)− (1− q)2(α− α2).
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Again squaring both sides and simplifying, we have

4(q2 + (1− q2)α)(q2 + 2q(1− q)α+ (1− q)2α2

−q2 − (1− q2)α+ (1− q)2(α− α2))

≤ (1− q)4(α− α2)2.

Fortuitously, the left hand side turns out to be identically 0. Thus, the inequal-
ity holds. The reader can refer to Fig. 3.3(a) and Fig. 3.3(b) for plots of the upper
boundaries of RU and B1 for two fixed values of q.
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Figure 3.3: (a) Upper boundaries for RU and B1 for q = 0.1. (b) Upper boundaries for
RU and B1 for q = 0.01.

We denote the region RU ∪RL by R. We show below that R is an invariant region
in the sense that once the system enters R, it stays there.

Proposition 3.1.2. If (αk0 , βk0 , qk0) ∈ R for some k0, then (αk, βk, qk) ∈ R for all
k ≥ k0.

Proof. Without lost of generality, we assume (αk, βk, qk) ∈ RU . We know that RL
is the image of U in L. Thus if the next state (αk+1, βk+1, qk+1) ∈ L, then it must
be inside RL. We already have qk+1 ≤ qk, which indicates that Rqk+1

U lies above
RqkU in the (α, β) plane. Moreover, for a fixed q, the upper boundary RqU is monotone
increasing in the (α, β) plane. We already know that αk+1 > αk and βk+1 < βk. As
a result, if the next state (αk+1, βk+1, qk+1) ∈ U , then the next state is in fact inside
RU .

We have shown that the system enters B1 after certain levels of fusion. By the fact
that B1 ⊂ RU , we conclude that the system enters RU at some level of the tree and
stays inside the invariant region R at all levels above.
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In the next section, we will consider the step-wise reduction of the total error prob-
ability when the system lies inside the invariant region and deduce upper and lower
bounds for the total error probability.

3.1.3 Error probability bounds

Recall that the total detection error probability for a node at the k-th level is (αk+βk)/2
because of the equal-prior assumption. Let Lk = αk+βk, which is twice the total error
probability. We will derive bounds on logL−1

k , whose growth rate is related to the rate
of converge of Lk to 0.

Proposition 3.1.3. Let L(q)
k+1 be the total error probability at the next level from the

current state (αk, βk, q). Suppose that (αk, βk, q1) and (αk, βk, q2) ∈ U . If q1 < q2,
then

L
(q1)
k+1 ≤ L

(q2)
k+1,

with equality if and only if αk = βk.

Proof. From (3.5), we have

L
(q)
k+1 =

1− q
1 + q

L
(0)
k+1 +

2q

1 + q
(αk + βk),

where L(0)
k+1 = 2αk − α2

k + β2
k .

It is easy to show that 2αk − α2
k + β2

k ≤ αk + βk.

2αk − α2
k + β2

k ≤ αk + βk

⇐⇒ αk − α2
k ≤ βk − β2

k.

Since αk + βk ≤ 1 and βk ≥ αk, we have βk − 1/2 ≤ 1/2 − αk. Notice that the
function x− x2 peaks at x = 1/2. Hence, 2αk − α2

k + β2
k ≤ αk + βk with equality if

and only if αk = βk.

Notice that
1− q
1 + q

+
2q

1 + q
= 1.

Therefore we can write

L
(q1)
k+1 = p1L

(0)
k+1 + (1− p1)(αk + βk),

where p1 = (1 − q1)/(1 + q1). Let p2 = (1 − q2)/(1 + q2), it is easy to see that
p1 ≥ p2. Thus we have

L
(q1)
k+1 = p1L

(0)
k+1 + (1− p1)(αk + βk)

+(p2 − p1)L
(0)
k+1 − (p2 − p1)L

(0)
k+1

≤ p1L
(0)
k+1 + (1− p1)(αk + βk)

+(p2 − p1)L
(0)
k+1 − (p2 − p1)(αk + βk)

= L
(q2)
k+1.

Moreover, ‘=’ holds if and only if αk = βk.
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From Proposition 3.1.3, we immediately deduce that for any q1 > 0,

L
(0)
k+1 ≤ L

(q1)
k+1.

This means that the decay of the total error probability for a single step is the fastest
when q = 0. As a result, for the case where q 6= 0, the step-wise shrinkage of the total
error probability cannot be faster than the case where q = 0, where the asymptotic
decay exponent is

√
N [33].

Notice that from (3.1), the decay of qk is quadratic, which is much faster than the
decay rate of Lk. Moreover, it is easy to see that the decay of qk is faster than the decay
of αk and of βk. Hence, it is natural to assume that qk ≤ αk and qk ≤ βk when we
consider the step-wise shrinkage of the total error probability in the invariant region.
Next we give upper and lower bounds for the ratio Lk+2/L

2
k.

Proposition 3.1.4. Suppose that (αk, βk, qk) ∈ R, αk ≥ qk, and βk ≥ qk. Then,

1

2
≤ Lk+2

L2
k

≤ 4.

Proof. First, we consider the lower bound. The evolution of the system is

(αk, βk, qk)→ (αk+1, βk+1, q
2
k)→ (αk+2, βk+2, q

4
k).

From Proposition 3.1.3, we have

L
(0)
k+2 ≤ Lk+2,

where L(0)
k+2 = 2αk+1 −α2

k+1 + β2
k+1 as defined before. To prove 1/2 ≤ Lk+2/L

2
k, it

suffices to show that 1/2 ≤ L(0)
k+2/L

2
k.

If (αk, βk) ∈ Ru \B1, then

L
(0)
k+2

L2
k

=
2αk+1 − α2

k+1 + β2
k+1

(αk + βk)2
.

We have
αk+1 =

1− qk
1 + qk

(2αk − α2
k) +

2qk
1 + qk

αk ≥ αk

and
βk+1 =

1− qk
1 + qk

β2
k +

2qk
1 + qk

βk ≥ β2
k.

Thus, it suffices to show that

2αk − α2
k + β4

k

(αk + βk)2
≥ 1

2
.

It is easy to see that
2(2αk − α2

k) ≥ 1− (1− αk)4.
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Hence, it suffices to show that

(1− (1− αk)4 + β4
k) ≥ (αk + βk)2,

which has been proved in [33].

If (αk, βk) ∈ B1, then it suffices to show that

α2
k+1 + 2βk+1 − β2

k+1

(αk + βk)2
≥ 1

2
.

We have
αk+1 =

1− qk
1 + qk

(2αk − α2
k) +

2qk
1 + qk

αk ≥ αk

and
βk+1 =

1− qk
1 + qk

β2
k +

2qk
1 + qk

βk ≥ β2
k.

Thus, it suffices to proof
α2
k + β2

k

(αk + βk)2
≥ 1

2
,

which is easy to see.

Next we prove the upper bound of the ratio Lk+2/L
2
k.

If (αk, βk) ∈ Ru \B1, then

Lk+2

L2
k

≤ Lk+1

L2
k

=
1− qk
1 + qk

2αk − α2
k + β2

k

(αk + βk)2
+

2qk
1 + qk

(αk + βk).

It is easy to see that
2qk

1 + qk
(αk + βk) ≤ 1.

Next, we can prove that
2αk − α2

k + β2
k

(αk + βk)2
≤ 2,

which is equivalent to

φ(αk, βk) := 2αk − 3α2
k − β2

k − 4αkβk ≤ 0.

We have
∂φ

∂βk
= −2βk − 4αk ≤ 0.

Thus, we can consider the lower boundary of this region which is the upper boundary
of B1.

β =
−q +

√
q2 + (1− q)2(2α− α2) + 2q(1− q)α

1− q .

Denote ϕ(α, q) :=
√
q2 + (1− q)2(2α− α2) + 2q(1− q)α. We have

φ(αk, βk) = −(q2
k + q2

k + (1− qk)2(2αk − α2
k)

+2qk(1− qk)αk − 2qkϕ(αk, qk))/(1− qk)2

−4αkβk + 2αk − 3α2
k

=
2qkβk
1− qk

− 4αkβk −
2qkαk
1− qk

− 2α2
k.
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It is easy to see that
2qkβk
1− qk

− 4αkβk ≤ 0.

Hence, we have
1− qk
1 + qk

2αk − α2
k + β2

k

(αk + βk)2
≤ 2,

and
Lk+2

L2
k

≤ 3.

For the case where (αk, βk) ∈ B1, we prove that the ratio is upper bounded by 4.
The evolution of the system is

(αk, βk, qk)→ (αk+1, βk+1, q
2
k)→ (αk+2, βk+2, q

4
k).

It is easy to see that
L

(qk)
k+2 ≥ Lk+2,

where L(qk)
k+2 denotes the total error probability if we use qk to calculate from Lk+1 to

Lk+2. Therefore, it suffices to prove that

L
(qk)
k+2 − 4L2

k = αk+2 + βk+2 − 4(αk + βk)2 ≤ 0.

We have
βk+1 =

1− qk
1 + qk

β2
k +

2qk
1 + qk

βk.

From the assumption that βk ≥ q, we have

∂βk+1

∂βk
=

2(1− qk)

1 + qk
βk +

2qk
1 + qk

≤ 4βk.

It is easy to get that

βk+2 =
1− qk
1 + qk

(2βk+1 − β2
k+1) +

2qk
1 + qk

βk+1

= −1− qk
1 + qk

β2
k+1 +

2

1 + qk
βk+1.

Therefore, we have

∂βk+2

∂βk
= −2

1− qk
1 + qk

βk+1
∂βk+1

∂βk
+

2

1 + qk

∂βk+1

∂βk
≤ 8βk.

Thus,
∂L

(qk)
k+2 − 4L2

k

∂βk
≤ 8βk − 8αk − 8βk ≤ 0.

Therefore, we can consider the lower boundary of B1, βk = αk. We have

L
(qk)
k+2 − 4L2

k =
4(1− qk)2(1− qk)

(1 + qk)3
α2
k − 4

(1− qk)2

(1 + qk)2
α3
k

+
2(1− qk)2

(1 + qk)2
α2
k +

8qk
(1 + qk)2

αk − 16α2
k ≤ 0,

which holds in region B1. Hence, the ratio is upper bounded by 4 in this region.
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Proposition 3.1.4 gives rise to bounds on the change in the total error probability
every two steps: Lk+2 ≤ 4L2

k and Lk+2 ≥ L2
k/2. From these, we can derive bounds

for logL−1
k for even-height trees, i.e., k = logN is even. Let PN = LlogN , namely,

the total error probability at the fusion center. We will derive bounds for logP−1
N .

Theorem 3.1.1. Suppose that (α0, β0, q0) ∈ R and logN is even. Then,
√
N
(
logL−1

0 − 2
)
≤ logP−1

N ≤
√
N
(
logL−1

0 + 1
)
.

Proof. If (α0, β0, q0) ∈ R, then we have (αk, βk, qk) ∈ R for k = 0, 1, . . . , logN−2.
From Proposition 3.1.4, we have

Lk+2 = akL
2
k

for k = 0, 1, . . . , logN−2 and some ak ∈ [1/2, 4]. Therefore, for k = 2, 4, . . . , logN ,
we have

Lk = a(k−2)/2 · a2
(k−4)/2 . . . a

2(k−2)/2

0 L2k/2

0 ,

where ai ∈ [1/2, 4]. Substituting k = logN , we have

logP−1
N =− log a(k−2)/2 − 2 log a(k−4)/2 − . . .

− 2(k−2)/2 log a0 +
√
N logL−1

0 .

Notice that logL−1
0 > 0 and for each i, −1 ≤ log ai ≤ 2. Thus,

logP−1
N ≤

√
N logL−1

0 +
√
N

=
√
N
(
logL−1

0 + 1
)
.

Finally,

logP−1
N ≥ −2

√
N +

√
N logL−1

0

=
√
N
(
logL−1

0 − 2
)
.

For odd-height trees, we need to calculate the decrease in the total error probability
in a single step. For this, we have the following proposition.

Proposition 3.1.5. If (αk, βk, qk) ∈ U , then we have

Lk+1

L2
k

≥ 1

and
Lk+1

Lk
≤ 1.
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Proof. To prove Lk+1/L
2
k ≥ 1, it suffices to prove that

1− qk
1 + qk

(2αk − α2
k + β2

k − (αk + βk)2)

+
2qk

1 + qk
(αk + βk − (αk + βk)2) ≥ 0,

which is easy to see.

To prove Lk+1/Lk ≤ 1, it suffices to prove that

1− qk
1 + qk

(2αk − α2
k + β2

k − (αk + βk))

+
2qk

1 + qk
(αk + βk − (αk + βk)) ≤ 0,

which is easy to see.

From Propositions 3.1.4 and 3.1.5, we give bounds for the total error probability at
the fusion center for trees with odd height.

Theorem 3.1.2. Suppose that (α0, β0, q0) ∈ R and logN is odd. Then,√
N

2

(
logL−1

0 − 2
)
≤ logP−1

N ≤
√

2N
(
logL−1

0 + 1
)
.

Proof. The proof is simlar to that of Theorem 3.1.1 and it is omitted.

3.1.4 Asymptotic rates

In this section, we consider the asymptotic decay rate of the total error probability with
respect to N . We compare the rate with that of balanced binary relay trees without
sensor failures.

Notice that when N is very large, the sequence {(αk, βk, qk)} enters the invariant
region R at some level and stays inside afterward. Therefore the decay rate in the
invariant region determines the asymptotic rate. Because our error probability bounds
for odd-height trees differ from those of even-height trees by a constant term, without
lost of generality, we will consider trees with even height to calculate the decay rate.

Proposition 3.1.6. If L0 = α0 + β0 is fixed, then

logP−1
N = Θ(

√
N).

Proof. To analyze the asymptotic rate, we may assume that L0 < 1/2. In this case, the
bounds in Theorem 3.1.1 show that

logP−1
N = Θ(

√
N).

38



This implies that the convergence of the total error probability is sub-exponential
with decay exponent

√
N . Compared to the decay exponent for the case where q =

0 (no sensor failures), the asymptotic rate does not change when we have crummy
sensors, even though the step-wise shrinkage for the crummy sensor case is worse.

Given L0 ∈ (0, 1) and ε ∈ (0, 1), suppose that we wish to determine how many
sensors we need to have so that PN ≤ ε. The solution is simply to find an N (e.g., the
smallest) satisfying the inequality

√
N
(
logL−1

0 − 2
)
≥ − log ε.

The smallest N grows like Θ((log ε)2) (cf., [33], in which the growth rate is the same,
and [32], where a looser bound was derived).

3.2 Communication Link Failures

Next we consider the detection performance of balanced binary relay trees with failure-
prone communication links.

3.2.1 Problem formulation

We assume that all communication links between nodes at height k and height k + 1
have identical failure probability `k. As a result of the communication failure, with
a certain probability each node at level k in the tree does not have any data, which
we denote by pk. Assuming equal prior probabilities, we use the likelihood-ratio test
[41] with unit threshold when fusing binary messages at the relay nodes and the fusion
center.

Fusion 
Center

...

...

...

.
.
.

kN 2

0

1

1k

k

),,( 000 q

),,( 111 q

),,( 222 q

),,( kkk q

),,( 111  kkk q

Figure 3.4: A balanced binary relay tree with height k. Circles represent sensors mak-
ing measurements. Diamonds represent relay nodes which fuse binary messages. The
rectangle at the root represents the fusion center making an overall decision.
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Consider the simple problem of fusing binary messages passed to a node by its
two immediate child nodes. Assume that the two child nodes have identical Type I
error probability α, identical Type II error probability β, and identical node failure
probability p. Moreover, assume that the two communication links connecting the child
nodes to the parent node fail with identical probability `. We can show that for each
child node, the parent node will not receive any data from it with a certain probability,
which we denote by q (henceforth, we call this the node failure probability), and given
by:

q = p+ (1− p)`.

Denote the Type I and Type II error probability after the fusion by α′ and β′. The
probability that the parent node does not have any data is

p′ = (p+ (1− p)`)2 = q2.

If the parent node receives data from only one of the child nodes, then the Type I
and Type II error probabilities do not change since the parent node receives only one
binary message. The probability of this event is 2q(1− q), in which case we have

(α′, β′) = (α, β).

If the parent node receives messages from both child nodes, then the scenario is the
same as that in [32] and [33]. The probability of this event is (1 − q)2, in which case
we have

(α′, β′) =

 (1− (1− α)2, β2), α ≤ β,

(α2, 1− (1− β)2), α > β.

Let ᾱ′ and β̄′ be the mean Type I and Type II error probabilities conditioned on the
event that the parent node receives at least one message from its child nodes, i.e., the
parent node has data. We have

(ᾱ′, β̄′, q′) = f(α, β, q)

=



(
(1−q)(2α−α2)+2qα

1+q , (1−q)β2+2qβ
1+q , q2 + (1− q2)`′

)
,

if α ≤ β,(
(1−q)α2+2qα

1+q , (1−q)(2β−β2)+2qβ
1+q , q2 + (1− q2)`′

)
,

if α > β.

Our assumption is that all sensors have the same error probabilities (α0, β0, q0).
Therefore by the above recursion, all relay nodes at level 1 will have the same error
probability triplet (α1, β1, q1) = f(α0, β0, q0) (where α1 and β1 are the conditional
mean error probabilities). Similarly we can calculate error probability triplets for nodes
at all other levels. We have

(αk+1, βk+1, qk+1) = f(αk, βk, qk), k = 1, 2, . . . , (3.7)
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where (αk, βk, qk) is the error probability triplet of nodes at the k-th level of the tree.

The relation (3.7) allows us to consider (αk, βk, qk) as a discrete dynamic system.
For the case where `k = 0 for all k, we have studied (see [33]) the precise evolution
of the sequence {(αk, βk)}, derived total error probability bounds as functions of N ,
and established asymptotic decay rates. In this report, we study the case where `k 6= 0.
We derive total error probability bounds and determine the decay rate of the total error
probability.

We start by looking at the single trajectory shown in Fig. 3.5(a), with the commu-
nication failure probabilities given by `k+1 = `2k. We observe that qk decreases very
quickly to 0. In addition, as shown in Fig. 3.5(b), the trajectory approaches β = α at
the beginning. After (αk, βk) gets too close to β = α, the next pair (αk+1, βk+1) will
be repelled toward the other side of the line β = α. This behavior is similar to the
non-failure scenario, in which case there exists an invariant region in the sense that the
system stays in the invariant region once the system enters it [33]. Is there an invariant
region for the case where q 6= 0? We answer this question affirmatively by precisely
describing this invariant region in R3.
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0.1

αβ
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0.5

1
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α

β

(a) (b)

Figure 3.5: (a) A typical trajectory of (αk, βk, qk) in the (α, β, q) coordinates. (b) The
trajectory in (a) projected onto the (α, β) plane.

3.2.2 The evolution of Type I, Type II, and node failure probabili-
ties

The relation (3.7) is symmetric about the hyperplanes α + β = 1 and β = α. Thus,
it suffices to study the evolution of the dynamic system only in the region bounded by
α+ β < 1, β ≥ α, and 0 ≤ q ≤ 1. Let

U := {(α, β) ≥ 0|α+ β < 1, β ≥ α, and 0 ≤ q ≤ 1}
be this triangular prism. Similarly, define the complementary triangular prism

L := {(α, β) ≥ 0|α+ β < 1, β < α, and 0 ≤ q ≤ 1}.
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First, we introduce the following region:

B1 := {(α, β, q) ∈ U|β ≤ −q/(1− q) +
√
q2 + (1− q)2(2α− α2) + 2q(1− q)α/(1− q)}.

If (αk, βk, qk) ∈ B1, then the next triplet (αk+1, βk+1, qk+1) jumps across the plane
β = α away from (αk, βk, qk). More precisely, if (αk, βk, qk) ∈ U , then (αk, βk, qk) ∈
B1 if and only if (αk+1, βk+1, qk+1) ∈ L. In other words, B1 is the inverse image of
L in U under mapping f .

It is easy to see if we start with (α0, β0, q0) ∈ U \B1, then before the system enters
B1, we have αk+1 > αk and βk+1 < βk. Thus, the system moves towards the β = α
plane. Therefore, if the number of sensors N is sufficiently large, then the system is
guaranteed to enter B1.

Next we consider the behavior of the system after it entersB1. If (αk, βk, qk) ∈ B1,
we consider the position of the next pair (αk+1, βk+1, qk+1), i.e., consider the image
of B1 under f , denoted by RL. Similarly we denote the reflection of RL with respect
to β = α by RU . We find that

RU := {(α, β, q) ∈ U|β ≤ −α+ 2(
√
q2 + (1− q2)α− q)/(1− q)}.

The sets RU and B1 have some interesting properties. We denote the projection of
the upper boundary of RU and B1 onto the (α, β) plane for a fixed q by RqU and Bq1 ,
respectively. It is easy to see that if q1 ≤ q2, then Rq1U lies above Rq2U in the (α, β)
plane. Similarly, if q1 ≤ q2, then Bq11 lies above Bq21 in the (α, β) plane. Moreover,
we have the following proposition.

Proposition 3.2.1. B1 ⊂ RU .

Proof. The proof is similar to that of Proposition 3.1.1 and it is omitted.

We denote the region RU ∪RL by R. We show below that R is an invariant region
in the sense that once the system enters R, it stays there.

Proposition 3.2.2. If (αk0 , βk0 , qk0) ∈ R for some k0 and {qk} decreases monotoni-
cally for k ≥ k0, then (αk, βk, qk) ∈ R for all k ≥ k0.

From the above proposition, we can study the reduction of the total error probability
when the system lies in R to determine the asymptotic decay rate.

First, we compare the step-wise reduction of the total error probability between
the case where communication links fail with certain probabilities (failure case) and
the case where the network has no communication link failures (non-failure case). We
show that if the communication links are unreliable, then the decay of the total error
probability for a single step is slower than the non-failure case.

Proposition 3.2.3. Let L(q)
k+1 be (twice) the total error probability at the next level

from the current state (αk, βk, q). Suppose that (αk, βk, q1) and (αk, βk, q2) ∈ U . If
q1 < q2, then

L
(q1)
k+1 ≤ L

(q2)
k+1

with equality if and only if αk = βk.
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Proof. From the recursion, we have

L
(q)
k+1 =

1− q
1 + q

L
(0)
k+1 +

2q

1 + q
(αk + βk),

where L(0)
k+1 = 2αk − α2

k + β2
k .

It is easy to show that 2αk − α2
k + β2

k ≤ αk + βk.

2αk − α2
k + β2

k ≤ αk + βk

⇐⇒ αk − α2
k ≤ βk − β2

k.

Since αk + βk < 1 and βk ≥ αk, we have βk − 1/2 < 1/2 − αk. Notice that the
function x− x2 peaks at x = 1/2. Hence, 2αk − α2

k + β2
k ≤ αk + βk with equality if

and only if αk = βk.

Notice that
1− q
1 + q

+
2q

1 + q
= 1.

Therefore we can write

L
(q1)
k+1 = π1L

(0)
k+1 + (1− π1)(αk + βk),

where π1 = (1 − q1)/(1 + q1). Let π2 = (1 − q2)/(1 + q2), it is easy to see that
π1 ≥ π2. Thus we have

L
(q1)
k+1 = π1L

(0)
k+1 + (1− π1)(αk + βk)

+(π2 − π1)L
(0)
k+1 − (π2 − π1)L

(0)
k+1

≤ π1L
(0)
k+1 + (1− π1)(αk + βk)

+(π2 − π1)L
(0)
k+1 − (π2 − π1)(αk + βk)

= L
(q2)
k+1.

From Proposition 3.2.3, we immediately deduce that if q > 0, then

L
(0)
k+1 ≤ L

(q)
k+1,

which means that the decay of the total error probability for a single step is the fastest
if the failure probability is 0 (i.e., the non-failure case). In other words, for the failure
case, the step-wise shrinkage of the total error probability cannot be faster than the
non-failure case, where the total error probability decays to 0 with exponent

√
N [33].

Next we assume that the communication failure probabilities are identical at all
levels, that is, `k = C for all k, where C ∈ (0, 1). Denote Lk = αk + βk to be (twice)
the total error probability for nodes at level k. Let PN = LlogN , which is (twice) the
total error probability at the fusion center. We provide an upper bound for logP−1

N .

Theorem 3.2.1. Suppose that (α0, β0, q0) ∈ R and `k = C for all k, whereC ∈ (0, 1).
Then,

logP−1
N ≤

√
N
(
logL−1

0 + 1
)
.
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Theorem 3.2.1 provides an upper bound for logP−1
N . Moreover, we can show that

in the asymptotic regime,
logP−1

N = o(
√
N).

This implies that the convergence rate is strictly slower than
√
N (note that the conver-

gence rate for the non-failure case is exactly
√
N ).

Finally, we assume that the failure probabilities decay quadratically to 0, that is,
`k+1 = `2k, where k = 0, 1, . . . , logN − 1. In consequence, if α0, β0, and q0 are fixed,
then we have qk ≤ αk and qk ≤ βk for sufficiently large k. With these, we derive
upper and lower bounds for logP−1

N .

Proposition 3.2.4. Suppose that (αk, βk, qk) ∈ R, αk ≥ qk, and βk ≥ qk. Then,

1

2
≤ Lk+2

L2
k

≤ 4.

Proof. The proof is similar to that of Proposition 3.1.4 and it is ommitted.

Proposition 3.2.4 gives rise to bounds on the change in the total error probability
every two steps: Lk+2 ≤ 4L2

k and Lk+2 ≥ L2
k/2. From these, we can derive bounds

for logP−1
N for even-height trees, i.e., k = logN is even.

Theorem 3.2.2. Suppose that (α0, β0, q0) ∈ R and `k+1 = `2k, where k = 0, 1, . . . , logN−
1. If logN is even, then

√
N
(
logL−1

0 − 2
)
≤ logP−1

N ≤
√
N
(
logL−1

0 + 1
)
.

Proof. If (α0, β0, q0) ∈ R, then we have (αk, βk, qk) ∈ R for k = 0, 1, . . . , logN−2.
From Proposition 3.2.4, we have

Lk+2 = akL
2
k

for k = 0, 1, . . . , logN−2 and some ak ∈ [1/2, 4]. Therefore, for k = 2, 4, . . . , logN ,
we have

Lk = a(k−2)/2 · a2
(k−4)/2 . . . a

2(k−2)/2

0 L2k/2

0 ,

where ai ∈ [1/2, 4]. Substituting k = logN , we have

logP−1
N =− log a(k−2)/2 − 2 log a(k−4)/2 − . . .

− 2(k−2)/2 log a0 +
√
N logL−1

0 .

Notice that logL−1
0 > 0 and for each i, −1 ≤ log ai ≤ 2. Thus,

logP−1
N ≤

√
N logL−1

0 +
√
N

=
√
N
(
logL−1

0 + 1
)
.
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Finally,

logP−1
N ≥ −2

√
N +

√
N logL−1

0

=
√
N
(
logL−1

0 − 2
)
.

For odd-height trees, we need to calculate the decrease in the total error probability
in a single step. For this, we have the following proposition.

Proposition 3.2.5. If (αk, βk, qk) ∈ U , then we have

Lk+1

L2
k

≥ 1

and
Lk+1

Lk
≤ 1.

From Propositions 3.2.4 and 3.2.5, we give bounds for the total error probability at
the fusion center for trees with odd height.

Theorem 3.2.3. Suppose that (α0, β0, q0) ∈ R and `k+1 = `2k, where k = 0, 1, . . . , logN−
1. If logN is odd, then√

N

2

(
logL−1

0 − 2
)
≤ logPN ≤

√
2N
(
logL−1

0 + 1
)
.

We have derived error probability bounds for balanced binary relay trees with un-
reliable communication links. In the next section, we will use these bounds to study
the asymptotic rate of convergence.

3.2.3 Asymptotic rates

Notice that when N is very large and {qk} decreases monotonically, the sequence
{(αk, βk, qk)} enters the invariant region R at some level and stays inside afterward.
In consequence, the decay rate in the invariant region determines the asymptotic rate.
Since the error probability bounds for odd-height trees differ from those of even-height
trees simply in a constant term, without loss of generality, we will consider trees with
even height to calculate the decay rate.

Proposition 3.2.6. Suppose that L0 = α0 + β0 is fixed and {qk} decreases monotoni-
cally. If qk ≤ αk and qk ≤ βk for sufficiently large k, then

logP−1
N = Θ(

√
N).

This implies that the convergence of the total error probability is sub-exponential
with exponent

√
N . Compared to the exponent for the non-failure case, the scaling

law of the asymptotic rate does not change when we have unreliable communications,
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provided the probabilities of communication failure probabilities decay to 0 sufficiently
fast, even though the step-wise shrinkage for the failure case is worse.

Given L0 ∈ (0, 1) and ε ∈ (0, 1), suppose that we wish to determine how many
sensors we need to have so that PN ≤ ε. The solution is simply to find an N (e.g., the
smallest) satisfying the inequality

√
N
(
logL−1

0 − 2
)
≥ − log ε.

The smallest N grows like Θ((log ε)2) (cf., [33], in which the growth rate is the same,
and [32], where a looser bound was derived).
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Chapter 4

Submodularity and Optimality
of Fusion Rules

4.1 Problem Formulation

Consider a binary hypothesis testing problem in a balanced binary relay tree with height
h. The leaf nodes, depicted as circles in Fig. 5.1, are identical sensors making inde-
pendent measurements. Then the measurements are compressed into binary messages
and forwarded to their parent nodes. Consider a non-leaf node p. We denote by C(p)
the immediate child nodes of p, which receives two binary messages Yc ∈ {0, 1} for
c ∈ C(p). Then p summarizes the two binary messages into a new binary message
Yp ∈ {0, 1} using fusion rule λp:

Yp = λp({Yc : c ∈ C(p)}).
The new message Yp is then communicated to the parent node of p. Ultimately, the
fusion center generates an overall binary decision. In balanced binary relay tree with
binary message alphabet, we already know that the majority rule with random tie-
breaking does not change the Type I and II error probabilities [37]. In consequence,
the only meaningful rules to aggregate two binary messages in this case are simply
‘AND’ and ‘OR’ rules defined as follows:

• AND rule (denote by A): the parent node decides 1 if and only if both the child
nodes send 1;

• OR rule (denote by O): the parent node decides 0 if and only if both the child
nodes send 0.

Notice that ULRT is either the A rule or the O rule, depending on the values of the
Type I and Type II error probabilities at a particular level of the tree. Henceforth, we
choose all fusion rules in the tree from Y = {A,O}.

We assume that all sensors are identical and independent in this balanced config-
uration, and that all the nodes at level k use the same fusion rule λk; i.e., λp = λk
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for all every node p at the k-th level. In this case, we have shown in [33] that all the
nodes at level k have the same Type I (false alarm) and Type II (missed detection) error
probabilities, which we denote by αk and βk respectively.

We denote by πh = (λ1, λ2, . . . , λh) a fusion strategy, where λj ∈ Y denotes the
fusion rule for nodes at each level j. Let the collection of all possible fusion strategies
πh be Yh, which can be written as

Yh = Y × Y × . . .× Y︸ ︷︷ ︸
h times

.

Note that for given initial error probability pair (α0, β0), the pair (αh, βh) depends on
the strategy πh.

),( 00 

),( 11 

),( 22 

),( hh 

),( 11  hh 

Fusion 
Center

...

...

...

.
.
.

hN 2

Figure 4.1: A balanced binary relay tree with height h. Circles represent sensors mak-
ing measurements. Diamonds represent relay nodes which fuse binary messages. The
rectangle at the root represents the fusion center making an overall decision.

For simplicity, we assume that the prior probabilities of the two hypotheses are
equal. The global objective is to minimize the total error probability at the fusion
center for given initial error probability pair (α0, β0), namely, to maximize (twice) the
reduction of the total error probability after all the fusions. We call this optimization
problem a h-optimal problem, which is defined as follows:

v∗h(α0, β0) = max
πh∈Yh

(α0 + β0 − (αh + βh))

= max
πh∈Yh

h−1∑
j=0

(αj + βj − (αj+1 + βj+1)).

The h-optimal fusion strategy is defined as

πh
∗
(α0, β0) = arg max

πh∈Yh
(α0 + β0 − (αh + βh))

= arg max
πh∈Yh

h−1∑
j=0

(αj + βj − (αj+1 + βj+1)).
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On the other hand, ULRT is the 1-optimal fusion rule, which maximizes the level-
wise reduction of the total error probability:

ULRT = arg max
λi∈Y

(αi + βi − (αi+1 + βi+1)) ∀i.

Note that in this case, a maximum a posteriori fusion rule is the same to ULRT. This
fusion rule is also known as the greedy rule in many literatures. In this context, we call
a fusion strategy ULRT strategy if each fusion rule of the strategy is a ULRT.

In the next section, we derive the explicit fusion strategy for balanced binary relay
tree with height h. We then show that the 2-optimal strategy is essentially equivalent to
the ULRT strategy. Moreover, we show that the reduction of the total error probability
is a submodular function, which implies that the ULRT strategy is close to optimal
fusion strategy.

4.2 Main Results

4.2.1 A dynamic programming formulation

In this section, we formulation the problem using a deterministic dynamic program-
ming model. First we define the necessary elements of this model.

• Dynamic System: We define the error probability pair at k-th level sk = (αk, βk)
to be the system state. Notice that αk and βk can only take values in the interval
[0, 1]. Therefore, the set of all the states is [0, 1] × [0, 1]. Moreover, given the
fusion rule, the state transition function is deterministic. For example, letting
sk−1 = (αk−1, βk−1), if we choose λk = A, then

(αk, βk) := f(αk−1, βk−1) = (1− (1− αk−1)2, β2
k−1).

On the other hand, if we choose λk = O, then

(βk, αk) = f(βk−1, αk−1) = (1− (1− βk−1)2, α2
k−1).

• Rewards: At each level k, we define the instantaneous reward to be the reduction
of the total error probability after fusing with λk:

r(sk−1, λk) = (αk−1 + βk−1)− (αk + βk),

where αk and βk are functions of the previous state sk−1 and the fusion rule λk.

Let vh−k(s) denote the cumulative reduction of the total error probability if we
start the system sk at level k and the strategy (λk+1, λk+2 . . . , λh) is used. Following
the above definitions, we have

vh−k(s) =

h∑
j=k+1

r(sj−1, λj)|sk=s.
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If we let k = 0, that is, we start calculating the reduction from the sensor level, then the
above cumulative reward function is the same as the global objective function defined
in Section II. In consequence, for given initial state s0, we have to solve the following
optimization problem to find the global optimal strategy over horizon h:

v∗h(s0) = max
πh∈Yh

h∑
j=1

r(sj−1, λj)|s0 .

The globally optimal strategy πh∗, which is a combination of fusion rules for all levels,
can be written as

πh
∗
(s0) = arg max

πh∈Yh

h∑
j=1

r(sj−1, λj)|s0 .

Notice that the state at the k-level sk depends on the previous state sk−1 and the fusion
rule λk. Hence we write the state at level k to be sk|sk−1,λk . The solution of the above
optimization problem can be characterized using Bellmam’s equation, which states that

v∗h(s0) = max
λ1∈Y

[
r(s0, λ1) + v∗h−1(s1|s0,λ1)

]
.

Moreover,
λ∗1(s0) = arg max

λ1∈Y

[
r(s0, λ1) + v∗h−1(s1|s0,λ1)

]
is the first element of the optimal strategy π∗. Recursively, the solution of the opti-
mization problem is

v∗h−(k−1)(sk−1) = max
λk∈Y

[
r(sk−1, λk) + v∗h−k(sk|sk−1,λk)

]
.

Moreover, the optimal fusion rule at level k is

λ∗k(sk−1) = arg max
λk∈Y

[
r(sk−1, λk) + v∗h−k(sk|sk−1,λk)

]
.

The explicit solution of the above set of equations requires dynamic programming,
and the computational complexity grows exponentially with respect to the horizon.

4.2.2 2-optimal fusion strategy

In this section, we show that the 2-optimal fusion strategy is equivalent to the ULRT
strategy. However, ULRT is not k-optimal for k > 2 in general. First consider the
2-optimal problem; i.e., k = 2.

v∗2(s0) = max
π2∈Y2

2∑
j=1

r(sj−1, λj)|s0 ,

where Y2 = {(A,A), (A,O), (O,O), (O,A)}. We have the following theorem.

Theorem 4.2.1. π2 is a 2-optimal fusion strategy if and only if π2 is a ULRT strategy.
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Proof. Suppose that the initial state is (α0, β0). The ULRT fusion rule reduces to A
and O in the following way:

• ULRT=A if βk ≥ αk;

• ULRT=O if βk < αk.

It is easy to show that the total error probability decreases after fusing with ULRT.
However, if we apply a fusion rule other than ULRT, then we can show that the total
error probability increases after fusion. For example, if βk ≥ αk and we apply the O
fusion rule, then the detection error probability increases:

αk+1 + βk+1 = α2
k + 1− (1− βk)2 ≥ αk + βk,

In other words, the instantaneous reward is non-positive,

r(sk,O) ≤ 0.
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Figure 4.2: Regions U , L, and B1 in the (α, β) plane.

Moreover because of symmetry, it suffices to prove this theorem in the upper trian-
gular region U = {(α, β) ≥ 0|α + β < 1 and β ≥ α} (see Fig. 4.2). Also recall that
if (αk, βk) ∈ B1, where B1 := {(α, β) ∈ U|(1 − α)2 + β2 ≤ 1} (see Fig. 4.2), then
the next state (αk+1, βk+1) ∈ L. Therefore, we divide our analysis into two parts:

• Case I: (α0, β0) ∈ B1, in which case the ULRT strategy is (A,O);

• Case II: (α0, β0) ∈ U \B1, in which case the ULRT fusion strategy is (A,A).

For Case I where (α0, β0) ∈ B1, it is easy to see that strategy (A,O) achieves a
larger reduction than that of (A,A), because usingA rule for the second level increases
the total error probability. Moreover, the total error probability after using (O,O)
increases with respect to the initial one. Hence, this fusion rule is excluded. It suffices
to show that the strategy (A,O) achieves larger reduction than that of (O,A):

r(s0,A) + r(s1,O) ≥ r(s0,O) + r(s1,A),
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which is equivalent with the following inequality

r(s0,A) + r(s1,O)− (r(s0,O) + r(s1,A)) =

(1− (1− β0)2)2 + 1− (1− α2
0)2−

((1− (1− α0)2)2 + 1− (1− β2
0)2) ≥ 0.

The above inequality can be reduced to

β2
0(1− β0)2 − α2

0(1− α0)2 ≥ 0,

which holds for all (α0, β0) ∈ B1.

For Case II where (α0, β0) ∈ U\B1, it is easy to see that strategy (A,A) achieves a
larger reduction than that of (A,O), because usingO rule for the second level increases
the total error probability. Moreover, the total error probability after using (O,O)
increases with respect to the initial one. Hence, this fusion rule is excluded. It suffices
to show that the strategy (A,A) achieves larger reduction than that of (O,A):

r(s0,A) + r(s1,A) ≥ r(s0,O) + r(s1,A),

which reduces to

r(s0,A) + r(s1|s0 ,A)− (r(s0,O) + r(s1|s0 ,A)) =

(1− (1− β0)2)2 + 1− (1− α2
0)2−

(1− (1− α0)4 + β4
0) ≥ 0.

The above inequality is equivalent to

β0(1− β0)(1 + β0)− α0(1− α0)(1− α0) ≥ 0,

which holds for all (α0, β0) ∈ U \B1.

We have shown that the ULRT strategy which maximizes the step-wise reduction
in the total error probability is also a 2-optimal fusion strategy. However, the ULRT
strategy is not in general optimal for multiple levels; i.e., h > 2. Next we provide a
numerical example that shows that the ULRT strategy is not 3-optimal. Let the initial
state be (α0, β0) = (0.2, 0.3). The ULRT strategy in this case is (A,O,A). As shown
in Fig. 4.3, the red line denotes the total error probabilities at each level up to 3. How-
ever, the 3-optimal strategy in this case is (O,A,A). The total error probability curve
of this strategy is shown as a green dashed-line in Fig. 4.3.

4.2.3 Submodularity

Consider a balanced binary relay tree with height 2h. We assume that two fusion rules
Λ of consecutive levels are choosing from the following set Z = {(A,O), (O,A)}.
Let Π = (Λ1,Λ2, . . . ,Λh) be the overall fusion strategy, where Λi ∈ Z . In this case,
the reduction of the total error probability is

uh(Λ1,Λ2, . . . ,Λh) = α0 + β0 − (α2h + β2h).
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Figure 4.3: Comparison of the ULRT strategy and the 3-optimal strategy.

The global optimization problem is to select Λi ∈ Z such that the above reduction is
maximized, that is

u∗h = max
Π∈Zh

uh(Λ1,Λ2, . . . ,Λh).

Next we show an important property of the reduction in the total error probability.

Proposition 1: uh(Λ1,Λ2, . . . ,Λh): Zh → R is a submodular function.

Proof. We show the ‘diminishing return’ property of the above function uh, that is,

um+1(Λ1,Λ2, . . . ,Λm,Λ
∗)− um(Λ1,Λ2, . . . ,Λm) ≥

un+1(Λ1,Λ2, . . . ,Λm, . . . ,Λn,Λ
∗)

− un(Λ1,Λ2, . . . ,Λm, . . . ,Λn),

where Λi ∈ Z for all i and Λ∗ ∈ Z .

We first prove the simplest case where m = 0 and n = 1, that is,

u1(Λ∗)− u0(∅) ≥ u2(Λ1,Λ
∗)− u1(Λ1),

for all Λ1,Λ
∗ ∈ Z . We know that u0(∅) = 0. Because of symmetry, it suffices

to show the above inequality for the cases where (Λ1,Λ
∗) = ((A,O), (A,O)) and

(Λ1,Λ
∗) = ((A,O), (O,A)). For example, if (Λ1,Λ

∗) = ((A,O), (A,O)), then we
can show the following

αk+4 − αk+2 − (αk+2 − αk) = (4.1)
αk+4 + αk − 2αk+2 = (4.2)

− α16
k + 8α14

k − 24α12
k + 32α10

k (4.3)

− 14α8
k − 8α6

k + 10α4
k − 4α2

k + αk ≥ 0, (4.4)
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which holds for sufficiently small Type I error probability. Therefore, the inequality
for the simplest case holds. The readers are referred to Fig. 4.4 for a plot of the value
in Eqn. (2) with respect to αk.

From this case, it is easy to show that

um+1(Λ1,Λ2, . . . ,Λm,Λ
∗)− um(Λ1,Λ2, . . . ,Λm) ≥

um+2(Λ1,Λ2, . . . ,Λm,Λm+1,Λ
∗)

− um+1(Λ1,Λ2, . . . ,Λm,Λm+1),

and

um+2(Λ1,Λ2, . . . ,Λm+1,Λ
∗)− um+1(Λ1,Λ2, . . . ,Λm+1) ≥

um+3(Λ1,Λ2, . . . ,Λm+1,Λm+2,Λ
∗)

− um+2(Λ1,Λ2, . . . ,Λm+1,Λm+2),

where Λi ∈ Z for all i and Λ∗ ∈ Z . The main result is easy to show simply by
mathematical induction.
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Figure 4.4: Values of αk+4 − αk+2 − (αk+2 − αk) versus αk.

Next we show that the function uh(Λ1,Λ2, . . . ,Λh) is a non-decreasing function.
It suffices to show the following:

u1(Λ∗) ≥ 0,

for all Λ∗ ∈ Z . For example, if Λ∗ = (A,O), then

u1(Λ∗) = αk + βk − (1− (1− αk)2)2 − (1− (1− β2
k)2) ≥ 0,

which holds if and only if the Type I and II error probabilities are sufficiently small.
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We have shown that the reduction of the total error probability is a submodular
function. Moreover, we know that the total error probability does not change if there is
no fusion, that is,

u0(∅) = 0.

Therefore, we can employ some well-known results about the optimality of greedy
algorithms on submodular functions. First, it has been shown that the greedy algorithm
provides a constant-factor approximation for the submodular problems.

Lemma 1: (Nemhauser et al., [1978]) For a monotonic submodular function F with
F (∅) = 0, the greedy strategy Sg achieves at least a constant factor of the maximum
value F ∗(S) obtained by the globally optimal strategy; i.e.,

F (Sg) ≥ (1− e−1)F ∗(S).

Proof. See [42] for the proof.

We denote u� to be the reduction of the total error probability when using ULRT
as the fusion rules for all levels in balanced binary relay trees. After applying Lemma
1 to our problem, we get the following theorem.

Theorem 4.2.2. Consider a balanced binary relay tree with height 2h. We have

(1− e−1)u∗h ≤ u�h ≤ u∗h.

Proof. The inequality on the right hand side holds simply because u∗h is the maximum
reduction of the total error probability; i.e.,

u�h ≤ u∗h.

We have shown that uh is a submodular function with u0(∅) = 0. Therefore, we can
simply apply the Lemma 1 to this problem.

(1− e−1)u∗h ≤ u�h.

Theorem 2 tells that the ULRT strategy is essentially close to the overall optimal
strategy. However, recall that the fusion strategy is a collection of fusion rules from
Z = {(A,O), (O,A)}. Thus, the strategies we considered in this section have at most
two consecutive repeated fusion rules. For example, the strategy (A,A,A, . . .) is not
considered.

55



Chapter 5

M -ary Relay Trees

In this chapter, we use the above approach to study the detection performance ofM -ary
relay trees. In contrast to the results in [36], which only address the asymptotic regime,
we derive tight upper and lower bounds for the Type I and II error probabilities at the
fusion center as explicit functions of N . We show that the majority dominance rule is
essentially sub-optimal in the case where M is even. Specifically, our result shows that
for all M ,

log2 P
−1
N = O(N logMb (M+1)

2 c),

a result not present in [36].

5.1 Problem Formulation

We consider the problem of binary hypothesis testing between H0 and H1 in an M -
ary relay tree. Let P0 and P1 be the probability measures associated with the binary
hypotheses. As shown in Fig. 5.1, leaf nodes are sensors undertaking initial and in-
dependent measurements of the same event. Only the leaves are sensors making mea-
surements in this tree architecture. These measurements are compressed into binary
messages and forwarded to the parent nodes at the next level. Each non-leaf node with
the exception of the root, the fusion center, is a relay node, which combines M binary
messages into one new binary message and forwards the new binary message to its
parent node. This process takes place at each node, culminating at the fusion center
at which the final decision is made based on the information received. The height of
the tree is logM N , which grows as the number of sensors increases. Evidently, for
M = 2, the structure is simply a balanced binary relay tree, which is the worst-case
scenario in the sense of largest tree height among M -ary relay trees.

We assume that all sensors are independent given each hypothesis, and that all
sensors have identical Type I error probability (denoted by α0) and identical Type II
error probability (denoted by β0). We apply the majority dominance rule as the fusion
rule at the relay nodes and at the fusion center. We answer the following questions
about the Type I and II error probabilities:
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Figure 5.1: An M -ary relay tree with height k. Circles represent sensors making initial
measurements. Diamonds represent relay nodes which fuse M binary messages. The
rectangle at the root represents the fusion center making an overall decision.

• How do they change as we move upward in the tree?

• What are their explicit forms as explicit functions of N?

• Do they converge to 0 at the fusion center?

• How fast will they converge with respect to N?

5.2 Error Probability Bounds

We divide our analysis into two cases: M is an odd integer (oddary tree) and M is an
even integer (evenary tree). In each case, we first derive the recursion of the Type I
and II error probabilities and show that all nodes at level k have the same Type I and
II error probabilities (αk, βk).. Then we study the step-wise reduction of each kind
of error probability after fusion with majority dominance rule. From these we provide
upper and lower bounds for the Type I and II error probability at the fusion center. We
then derive upper and lower bounds for the total error probability at the fusion center.

5.2.1 Oddary tree

Suppose that uo is the output binary message after fusing M input binary messages
ui = {u1, u2, . . . , uM}, where ut ∈ {0, 1} for all t. The majority dominance rule,
when M is odd, is simply:

uo :=

{
1, if u1 + u2 + . . .+ uM ≥M/2,
0, if u1 + u2 + . . .+ uM ≤M/2.
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Assume binary messages {ui}Mi=1 have identical Type I error probability α and
identical Type II error probability β. Then, the Type I and II error probability pair
(α′, β′) for the binary message uo is given by:

α′ = P0(uo = 1) =

M∏
i=1

P0(ui = 1)

+

(
M

1

)
P0(ut = 0)

M−1∏
i=1

P0(ui = 1) + . . .

+

(
M

(M − 1)/2

) (M+1)/2∏
i=1

P0(ui = 1)

(M−1)/2∏
t=1

P0(ut = 0)

= f(α) := αM +

(
M

1

)
αM−1(1− α) + . . .

+

(
M

(M − 1)/2

)
α(M+1)/2(1− α)(M−1)/2

and

β′ = f(β) = βM +

(
M

1

)
βM−1(1− β) + . . .

+

(
M

(M − 1)/2

)
β(M+1)/2(1− β)(M−1)/2.

As all sensors have the same error probability pair (α0, β0), all relay nodes at level
1 will have the same error probability pair (α1, β1) = (f(α0), f(β0)). By recursion,
we have

(αk+1, βk+1) = (f(αk), f(βk)), k = 0, 1, . . . ,

where (αk, βk) is the error probability pair of nodes at the k-th level of the tree. Since
the recursions for αk and βk are the same,it suffices to consider only the Type I error
probability αk in studying the decay speed. Next we will analyze the step-wise shrink-
age of the Type I error probability after each fusion step. This analysis will in turn
provide upper and lower bounds for the Type I error probability at the fusion center.

Proposition 5.2.1. Consider an M -ary relay tree, where M is odd. Suppose that we
apply majority dominance rule as the fusion rule. Then,

1 ≤ αk+1

α
(M+1)/2
k

≤ 2M−1.

Proof. Consider the ratio of αk+1 and α(M+1)/2
k :

αk+1

α
(M+1)/2
k

= α
(M−1)/2
k +

(
M

1

)
α

(M−3)/2
k (1− αk)

+ . . .+

(
M

(M − 1)/2

)
(1− αk)(M−1)/2.
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First, we derive the lower bound of the ratio. We know that

1 = (αk + 1− αk)(M−1)/2

= α
(M−1)/2
k +

(
(M − 1)/2

1

)
α

(M−3)/2
k (1− αk)

+ . . .+

(
(M − 1)/2

(M − 1)/2

)
(1− αk)(M−1)/2.

Moreover, it is easy to see that(
M

k

)
≥
(

(M − 1)/2

k

)
for all k = 1, 2, . . . , (M − 1)/2. In consequence, we have

αk+1

α
(M+1)/2
k

≥ 1.

Next we derive the upper bound of the ratio. Since αk < 1, we have

αk+1

α
(M+1)/2
k

≤ 1 +

(
M

1

)
+ . . .+

(
M

(M − 1)/2

)
= 2M−1.

Using the above proposition, we now derive upper and lower bounds for log2 α
−1
k .

Theorem 5.2.1. Consider an M -ary relay tree, where M is an odd integer. Let λM =
(M + 1)/2. We have

λkM (log2 α
−1
0 − (M − 1)) ≤ log2 α

−1
k ≤ λkM log2 α

−1
0 .

Proof. From the inequalities in Proposition 5.2.1, we have

αk+1 = ckα
(M+1)/2
k = ckα

λM
k ,

where ck ∈ [1, 2M−1]. From these we obtain

αk = ck−1c
λM
k−2 . . . c

λM
k−1

0 αλM
k

0 ,

where ci ∈ [1, 2M−1] for all i, and

log2 α
−1
k =− log2 ck−1 − λM log2 ck−2 − . . .

− λk−1
M log2 c0 + λkM log2 α

−1
0 .

Since log2 ci ∈ [0, (M − 1)], we have

log2 α
−1
k ≤ λkM log2 α

−1
0 .

Moreover, we obtain

log2 α
−1
k ≥− (M − 1)− λM (M − 1)− . . .

− λk−1
M (M − 1) + λkM log2 α

−1
0

≥ λkM (log2 α
−1
0 − (M − 1)).
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In contrast to the result in [36], which only focuses on the asymptotic regime, our
result holds for all finite k. In addition, the result in [36] deals with the total error
probability at the fusion center. But our approach provides bounds for both Type I and
II error probabilities.

Corollary 5.2.1. Let PF,N be the Type I error probability at the fusion center of an
M -ary relay tree, where M is odd. We have

N logM λM (log2 α
−1
0 − (M − 1)) ≤

log2 P
−1
F,N ≤ N logM λM log2 α

−1
0 .

5.2.2 Evenary tree

We now study the case where M is even and derive upper and lower bounds for Type I
error probability. We still use the majority dominance rule (with random tie-breaking)
as the fusion rule at the relay nodes and at the fusion center. The majority dominance
rule in this case is:

uo :=


1, if u1 + u2 + . . .+ uM > M/2,

0 w.p. Pb, if u1 + u2 + . . .+ uM = M/2,
1 w.p. 1− Pb, if u1 + u2 + . . .+ uM = M/2,

0, if u1 + u2 + . . .+ uM < M/2,

where Pb denotes the Bernoulli parameter for the tie-breaking case. For simplicity,
we assume that tie-breaking is fifty-fifty in this report; i.e., Pb = 1/2. In this case, the
recursions for the Type I and II error probabilities are:

α′ = P0(uo = 1) =

M∏
i=1

P0(ui = 1)

+

(
M

1

)
P0(ut = 0)

M−1∏
i=1

P0(ui = 1) + . . .

+
1

2

(
M

M/2

)M/2∏
i=1

P0(ui = 1)

M/2∏
t=1

P0(ut = 0)

= g(α) := αM +

(
M

1

)
αM−1(1− α) + . . .

+
1

2

(
M

M/2

)
αM/2(1− α)M/2

and

β′ = g(β) = βM +

(
M

1

)
βM−1(1− β) + . . .

+
1

2

(
M

M/2

)
βM/2(1− β)M/2.

Next we study the step-wise reduction of each type of error probability.
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Proposition 5.2.2. Consider an M -ary relay tree, where M is even. Suppose that we
apply majority dominance as the fusion rule. Then,

1 ≤ αk+1

α
M/2
k

≤ 2M−1.

The proof is similar to that of Proposition 5.2.1 and it is omitted. Notice that the
above result is only useful when M ≥ 4. For the case where M = 2 (balanced binary
relay trees), we have

αk+1 = α2
k + αk(1− αk) = αk

and
βk+1 = β2

k + βk(1− βk) = βk;

that is, the Type I and II error probabilities remain the same after fusion. However,
in [33], we have shown that with the unit-threshold likelihood-ratio test as the fusion
rule at the relay nodes and the fusion center, the total error probability decays to 0
sub-exponentially with exponent

√
N .

From the above proposition, we derive upper and lower bounds for the Type I error
probability at each level k.

Theorem 5.2.2. Consider an M -ary relay tree, where M is an even integer. Let λM =
M/2. We have

λkM (log2 α
−1
0 − (M − 1)) ≤ log2 α

−1
k ≤ λkM log2 α

−1
0 .

The proof is similar to that of Theorem 5.2.1 and it is omitted. Similar with the
case where M is odd, we can provide upper and lower bounds for the Type I error
probability at the fusion center.

Corollary 5.2.2. Let PF,N be the Type I error probability at the fusion center of an
M -ary relay tree, where M is even. We have

N logM λM (log2 α
−1
0 − (M − 1)) ≤

log2 P
−1
F,N ≤ N logM λM log2 α

−1
0 .

Notice that the bounds in Corollaries 5.2.1 and 5.2.2 have the same form if we
simply let λM = b(M + 1)/2c. In the next section, we use the bounds above to derive
upper and lower bounds for the total error probability at the fusion center.

5.2.3 Bounds for the total error probability

Let π0 and π1 be the prior probabilities for the underlying hypotheses. In this section,
we provide upper and lower bounds for the total error probability PN at the fusion
center. It is easy to see that

PN = π0PF,N + π1PM,N ,

where PF,N and PM,N correspond to the Type I and II error probabilities at the fusion
center. With the bounds for each type of error probability, we provide bounds for the
total error probability as follows.
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Theorem 5.2.3. Consider an M -ary relay tree, let λm = bM+1
2 c. We have

N logM λM (log2 max{α0, β0}−1 − (M − 1)) ≤
log2 P

−1
N ≤ N logM λM (π0 log2 α

−1
0 + π1 log2 β

−1
0 ).

Proof. From the definition of PN , that is,

PN = π0PF,N + π1PM,N ,

we have the following:
PN ≤ max{PF,N , PM,N}.

In addition, we know that αk and βk have the same recursion. Therefore, the maximum
between the Type I and II error probability at the fusion center corresponds to the
maximum at the leaf nodes. Hence, we have

N logM λM (log2 max{α0, β0}−1 − (M − 1)) ≤ log2 P
−1
N .

By the fact that log2 x
−1 is a convex function, we have

log2 P
−1
N ≤ (π0 log2 P

−1
F,N + π1 log2 P

−1
M,N ).

Therefore, we have

log2 P
−1
N ≤ N logM λM (π0 log2 α

−1
0 + π1 log2 β

−1
0 ).

5.2.4 Asymptotic rates

In this section, we study the decay rate of the error probabilities in the asymptotic
regime. We show that in the case where M is even, the majority dominance rule is
sub-optimal. We also compare our asymptotic results with those in [36].

First from Corollaries 5.2.1 and 5.2.2, we can easily derive the decay rate of the
Type I and II error probabilities. For example, for the Type I error probability, we have
the following.

Corollary 5.2.3. Consider an M -ary relay tree, let λm = bM+1
2 c. If α0 is fixed, then

log2 P
−1
F,N = Θ(N logM λM ).

Proof. To analyze the asymptotic rate, we may assume that α0 is sufficiently small,
that is, α0 < 2−(M−1). In this case, the bounds in Corollaries 5.2.1 and 5.2.2 show
that

log2 P
−1
F,N = Θ(N logM λM ).
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It is easy to show that logM λM is monotone with respect to M . Moreover, as M
goes to infinity, the limit of logM λM is 1. That is to say, when M is very large, the
decay is getting close to exponential. In terms of tree structures, when M is very large,
the tree becomes short, and therefore achieves similar performance to that of bounded-
height trees. From the fact that the Type I and II error probabilities follow the same
recursion, it is easy to see that the Type II error probability at the fusion center decays
to 0 with exponent N logM (bM+1

2 c). Moreover, we can compute the decay rate of the
total error probability.

Corollary 5.2.4. Suppose that (α0, β0) is fixed. Given any prior probabilities, we have

log2 P
−1
N = Θ(N logM λM ).

For the total error probability at the fusion center, we have similar arguments with
that for individual error probabilities. For large M , the decay of the total error proba-
bility is close to exponential.

Recall the results from [36], in which it is shown that, with any combination of
fusion rules,

log2 P
−1
N = O(N logM

(M+1)
2 ). (5.1)

The case where the relay nodes and the fusion center use the majority dominance rule
(with random tie-breaking) to combine messages was considered in [36], in which case
the decay rate of the total error probability is almost optimal. More precisely,

log2 P
−1
N = Ω(N logMb (M+1)

2 c).

Our results for the odd M case is consistent with the results in [36]. The majority
dominance rule in this case is essentially optimal in the sense of achieving the largest
decay exponent.

log2 P
−1
N = Θ(N logMb (M+1)

2 c) = Θ(N logM
M
2 ). (5.2)

However in the case where M is even, our results show that

log2 P
−1
N = O(N logMb (M+1)

2 c). (5.3)

Compared with (5.1), which is the upper bound for log2 P
−1
N in [36], our upper

bound (5.3) is more tight in the case of even M and it has the exact same form with
that of the lower bound; that is, we find the explicit decay rate (5.2) of the total error
probability in this case. Second, the decay exponent shows that the majority dominance
rule in this case is essentially sub-optimal in the sense of achieving the best decay expo-
nent. For example, in the case of binary relay trees, the total error probability remains
after fusion with the majority dominance rule. On the other hand, the likelihood-rate
test with unit threshold achieves the decay exponent

√
N [33].

In [36], the case where non-binary message alphabets are allowed in M -ary relay
trees is considered. Suppose that all nodes in the tree with the exception of the fusion
center are allowed to transmit messages from message alphabets with size m. Then
with the scheme in [36],

log2 P
−1
N = Ω(Nρ),
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where ρ = 1 + ln(1− 1/m)/ lnM .

In this report, we introduce another message-passing scheme for M -ary relay trees
with non-binary message alphabets. We show how the decay exponent increases with
respect to the size of the non-binary message alphabet. Compared with the scheme in
[36], we show that in order to achieve the same decay exponent, our scheme involves
much lower average message sizes.

5.3 Non-binary Message Alphabets

Consider the binary hypothesis testing problem in M -ary relay trees. We characterize
the detection performance by looking at the total error probability PN at the fusion
center. We have derived in [37] the decay rate of the total error probability at the fusion
center in the case where relay messages are all binary, that is,

log2 P
−1
N = Θ(N logMb (M+1)

2 c).

In this report, we allow more general message alphabet (non-binary) with size D, and
we denote this tree by (M,D)-tree. We have studied the detection performance of
(M, 2)-trees in [37] by investigating how fast the total error probability decays to 0.
What about the detection performance when D is an arbitrary finite integer?

We denote by uko the output message for each node at the k-th level after fusing M
input messages uk−1

i = {uk−1
1 , uk−1

2 , . . . , uk−1
M } from its child nodes at the (k − 1)-

th level, where uk−1
j ∈ {0, 1, . . . ,D} for all j ∈ {1, 2, . . . ,M}. First, we consider

an (M,D)-tree with height k0, in which there are Mk0 sensors. We assume that the
message alphabet size is sufficiently large; more precisely,

D ≥Mk0−1 + 1. (5.4)

Suppose that each sensor compresses its measurement into a binary message u0
o ∈

{0, 1} and sends it upward to its parent node. Moreover, each relay node simply sums
up the messages it receives from its immediate child nodes and sends the summation
to its parent node; that is,

uko =

M∑
t=1

uk−1
t .

Then we can show that the output message for each node at the k-th level is an integer
from {0, 1, . . . ,Mk} for all k ∈ {0, 1, . . . , k0−1}. Moreover, this message essentially
represents the number of its own child sensors that send ‘1’ upward. (A child sensor of
a node in the tree is any leaf node (sensor) attached to the subtree rooted at that node.)

Because of inequality (5.4), at each level k in the tree, the message alphabet size D
is large enough to represent all possible values of uko (k ∈ {0, . . . , k0}). In particular,
the fusion center (at level k0) knows the total number of sensors that send ‘1’ upward.
In this case, the detection performance is the same as a parallel configuration, where
each sensor sends a binary message to the fusion center directly. Recall that in the
parallel configurations, the total error probability decays exponentially fast to 0.
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Figure 5.2: A message-passing scheme for non-binary message alphabets in M -ary
relay tree.

Next we consider the case where tree height is very large. As shown in Fig. 5.2,
we apply the scheme described above, that is, the sensors send binary compressions of
their measurements upward to their parent nodes. Moreover, each relay node simply
sends the sum of the messages received to the parent node; i.e.,

uko =

M∑
t=1

uk−1
t . (5.5)

From the assumption of large tree height, it is easy to see that the message alphabet
size is not large enough for all the relay nodes to use the fusion rule described in (5.5).
With some abuse of notation, we let k0 to be the integer k0 = dlogM (D − 1)e. Note
that

Mk0−1 + 1 ≤ D ≤Mk0 + 1. (5.6)

From the previous analysis, we can show that with this scheme the nodes at the
k0-th level knows the number of ‘1’s from its child sensors. Therefore, it is equivalent
to consider the case where the nodes at level the k0 connect toMk0 sensors directly (all
the intermediate relay nodes can be ignored). However, we cannot use the fusion rule
described in (5.5) for the nodes at k0-th level to generate the output messages because
the message alphabet size is not large enough. Hence, we let each node at level k0 to
aggregate the M messages from its immediate child nodes into a new binary message
using the majority dominance rule (with random tie-breaking; same fusion rule as in
[37]). Therefore, the output message from each node at the k0-th level is binary again.
We can simply apply the fusion rule (5.5) and repeat this process throughout the tree,
culminating at the fusion center.

Theorem 5.3.1. The detection performance of (M,D)-trees is equal to that of (Mk0 , 2)-
trees, where k0 = dlogM (D− 1)e. In particular, if PN be the total error probability at
the fusion center for (M,D)-tree, then

log2 P
−1
N = Θ (N%) ,
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where

% :=

{
ln(Mk0+1)

lnMk0
− logM 2

k0
, if M is odd,

1− logM 2
k0

, if M is even.

Proof. Consider an (M,D)-tree with the scheme described above. It is easy to see that
equivalently we can consider a tree where the sensors connect to the nodes at the k0-th
level directly. In addition, because of the recursive strategy applied throughout the tree,
it suffices to consider the tree where the nodes at the `k0-th level connect to the nodes
at the (`+1)k0-th level directly for all non-negative integers `. Therefore, the detection
performance of (M,D)-tree is equal to that of the corresponding (Mk0 , 2)-tree.

We have shown in [37] that the total error probability in (M, 2)-trees decays to 0
with the following rate:

log2 P
−1
N = Θ(N logMb (M+1)

2 c).

Therefore, the decay rate for (Mk0 , 2)-trees is simply:

log2 P
−1
N = Θ(N log

Mk0
b (M

k0+1)
2 c),

which can be simplified easily as follows:

log2 P
−1
N = Θ (N%) ,

where

% :=

{
ln(Mk0+1)

lnMk0
− logM 2

k0
, if M is odd,

1− logM 2
k0

, if M is even.

Notice that limM→∞ ln(Mk0 + 1)/ lnMk0 = 1, which means that the even and
odd cases in the expression for % are similar. Hence in the following context, we will
simply analyze the case where M is even. From Theorem 5.3.1, we can see that, with
larger message alphabet size, the total error probability decays more quickly. However,
the change of the decay exponent is not significant because k0 depend on D logarith-
mically. Furthermore, if M is large, then the change of the performance becomes less
sensitive to the increase in D.

5.4 Scheme Comparison

In this section, we compare our scheme to that of [36]. We show that in order to achieve
the same decay exponent, the average message size used in our scheme is much smaller
than that used in [36].

First, notice that the result in [36] is a lower bound for the decay rate. On the other
hand, our result contains the explicit decay rate of the total error probability using our
scheme. The decay exponent in [36] is Nρ, where ρ = 1 − logM (m/(m − 1)). The
Taylor expansion for ρ as m→∞ is
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ρ = 1− 1

lnM

(
1

m
+

1

2m2
+

1

3m3
+O

(
1

m4

))
.

Therefore, for large m we have

ρ < 1− 1

lnM

(
1

m

)
.

On the other hand, the decay exponent associated with our scheme is N%, where

% = 1− logM 2

k0
= 1− 1

log2M

(
1

k0

)
.

Therefore, in order to achieve the same decay exponent in the asymptotic sense, we
should have

m = Θ(k0).

Notice that in our scheme the maximum alphabet size required is Mk0−1 + 1. There-
fore, the maximum alphabet size in our scheme is much larger than that of the scheme
in [36]. However, all the nodes in [36] use the same message alphabet with size m. In
our scheme only very few nodes in the tree are essentially using the maximum message
alphabet. For example, the sensors only send binary messages upward to their parent
nodes.

It is interesting to compare the average message size used in order to achieve such
detection performance. For the scheme in [36], the average message size used (in bits)
is simply b = log2m = Θ(log2 k0). On the other hand, the average size in bits used in
our scheme can be calculated as follows:

b(k0) =
Mk0 + . . .+M log2(Mk0−1 + 1)

Mk0 +Mk0−1 + . . .+M

We have
log2(Mk + 1) > log2M

k = k log2M

and
log2(Mk + 1) < log2(2Mkt) = 1 + k log2M

for all k. Therefore, the average size in bits is lower bounded by the following inequal-
ity:

b(k0) >
Mk0 +Mk0−1 log2M + . . .+M(k0 − 1) log2M

Mk0 +Mk0−1 + . . .+M

=
Mk0

Mk0 +Mk0−1 + . . .+M

+
log2M(M2(Mk0−1 − 1)−M(k0 − 1))/(M − 1)2

Mk0 +Mk0−1 + . . .+M

=
Mk0 −Mk0−1

Mk0 − 1
+
M log2M

M − 1

Mk0−1 − 1−M(k0 − 1)

Mk0 − 1
.

In addition, it is upper bounded by:

b(k0) < 1 +
M log2M

M − 1

Mk0−1 − 1−M(k0 − 1)

Mk0 − 1
.
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From these inequalities, it is easy to show that as k0 →∞,

b(k0)↗ 1− 1

M
+

log2M

M
.

Therefore, with large k0, the average message size in terms of bits in our scheme is
much smaller than that in [36].

b = log2m = Θ(k0)� 1− 1

M
+

log2M

M
≥ b(k0).
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Chapter 6

Information Geometry of Target
Tracking Sensor Networks

The work in this chapter was done by Yongqiang Cheng, Xuezhi Wang, Mark More-
lande, and William Moran.

6.1 Introduction

Advanced technologies for sensing, computing and networking create enormous oppor-
tunities for handling, gathering and processing measurement information via various
sensor networks. It is desirable to assess the performance of a sensor network effec-
tively in many application fields, where the statistical properties of sensor networks
are crucial. Information geometry, which is gradually gaining significance as it allows
the analysis of statistical properties of sensor networks from a unified perspective, has
been identified as a sophisticated and powerful tool for this purpose [43, 44].

Information geometry is the study of intrinsic properties of manifolds of probabil-
ity distributions [44], where the ability of data to discriminate those distributions is
translated into a Riemannian metric1. Specifically, the Fisher information provides a
local measure of discrimination of the distributions that translates immediately into a
Riemannian metric on the parameter manifold of the distributions. The main tenet of
information geometry is that many important notions (e.g. Fisher information, testing,
estimation, estimation accuracy) in probability theory, information theory and statistics
can be treated as structures (e.g. metric, divergence, projection, embedded curvatures)
in differential geometry by regarding the space of probabilities as a differentiable man-
ifold endowed with a Riemannian metric and a family of affine connections, including,
but not exclusively, the canonical Levi-Civita affine connection [45]. By providing the
means to analyse the Riemannian geometric properties of various families of probabil-
ity density functions, information geometry offers comprehensive results about statis-

1A Riemannian metric is an inner product defined on the tangent space of a manifold. It encodes how to
measure distances, angles and area at a particular point on a manifold by specifying a scalar product between
tangent vectors at that point.
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tical models simply by considering them as geometrical objects.

This geometric theory of statistics was pioneered in the 1940s by Rao [46], who first
interpreted the Fisher information matrix as a Riemannian metric on the space of prob-
ability distributions. Since then many scholars have contributed to the development
of this theory for statistical models. In 1972, Chentsov in [47] introduced a family
of affine connections and proved the uniqueness of the intrinsic metric and the one-
parameter family of affine connections. Meanwhile, Efron [48] undertook pioneering
work in a slightly different direction. He defined a concept of curvature called statis-
tical curvature and described the basic role of curvature in the high-order asymptotic
theory of statistical inference. Since then, several different groups have brought to ma-
turity the theoretical framework of statistical geometry. Of particular note is the work
of Amari and his collaborators [45, 49, 50] who have developed a duality structure the-
ory and have unified all of these theories in a differential-geometrical framework which
not only enriches the theory of information geometry but also provides opportunities
for a wide range of applications. Amari’s major motivation is in machine learning.
Here, we study the theory from a statistical signal processing perspective.

Information geometry has found many applications in the asymptotic theory of sta-
tistical inference [51], semiparametric statistical inference [52], the study of Boltzmann
machine [53], the Expectation-Maximization (EM) algorithm [54], and learning of neu-
ral networks [55], all with certain degree of success. In the last two decades, its applica-
tion has spanned several discipline areas such as information theory [56, 57], systems
theory [58, 59], mathematical programming [60], and statistical physics [61, 62]. It
also played a central role in the multi-terminal estimation theory [63]. In neuroscience
it has been used to extract higher-order interactions among neurons [64]. Many re-
searchers around the world are applying information geometry to new applications and
formulating new interpretations. An example of the former is the derivation of the
intrinsic Cramér Rao bound for the subspace tracking problem on manifolds given in
[65].

Information geometry can also provide new viewpoints in the analysis of sensing
systems. While important, understanding information geometry theory is nontrivial.
Sensor networks for target tracking form an important class of information networks.
It is well understood that the performance of target detection and tracking depends
heavily on the sensing ability of the underlying sensor network, which may consist
of sensors ranging from large like radars to small like motes. The advances in engi-
neering and sensing technologies enable more complex sensor networks to be built for
target detection and tracking. The evaluation of sensor network performance becomes
increasingly important, in particular, for sensor network design, configuration and opti-
mization. We believe that information geometry is able to offer advanced tools to allow
us to explore and therefore understand the structures of sensor systems. This work is
motivated to explore such potential in a simple and sensible way, using basic sensor
problems as exemplars.

In our recent work in [66] and [67], the Integrated Fisher information distance
(IFID) between two targets was approximately calculated and used to measure target
resolvability in the region of interest covered by a sensor network. Nevertheless, the
proposed approximation for calculating IFID is only valid for closely spaced targets
and the exact IFID must be evaluated by computing the integral along the geodesic
connecting the two target states, which is generally nontrivial.
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In this report, the connections between information geometry and the performance
of sensor networks for target tracking are explored in an attempt to gain a better under-
standing of sensor network measurement issues. The exact calculation of IFID and
Ricci curvatures for the sensor networks with a joint likelihood are presented and
analyzed. The interpretation of the geometry of statistical manifolds for sensor net-
works is illustrated via the affine immersion. The analysis is presented via three typical
sensor network scenarios: 1) a simple range-bearing radar, 2) two bearings-only pas-
sive sonars, and 3) three ranges-only detectors, respectively. In these scenarios it is
shown how information geometry can be used to address system measurement issues
such as evaluating sensor capability to distinguish closely spaced targets, measuring
the amount of information collected by sensors and solving the problem of optimal
scheduling of network sensor and resources. Although simple synchronized sensor
networks with sensors of the same type are considered in the demonstrative examples,
the analysis method can be applied to a more general case where dissimilar sensors are
involved as long as the likelihood and Fisher information matrix of the measurement
system are available.

The major contributions of this chapter are summarised as below.

1. The IFID between the states of two targets is computed by solving the geodesic
equations and is used to measure the ability of a sensor network to resolve targets.
The differences between IFID and the well known Kullback-Leibler divergence
are described.The relationship with the energy functional, which is the integrated
differential Kullback-Leibler divergence, and the differences between it and the
other two measures of divergence are described.

2. The structures of statistical manifolds are elucidated by computing the canonical
Levi-Civita affine connection as well as Riemannian and scalar curvatures. The
relationship between the Ricci curvature tensor field and the amount of informa-
tion achievable by the network sensors is highlighted.

3. An analytical presentation of statistical manifolds as immersions in Euclidean
space for the distributions of the exponential family is given.

The rest of the chapter is organized as follows. In the next section, the problem
of interest and the motivations of this work are described. The principles of infor-
mation geometry are then introduced in Section 6.3. In Section 6.4, sensor network
information, as measured by the IFID, is analyzed for three basic types of sensor net-
work problems; the canonical Levi-Civita affine connection as well as Riemannian and
scalar curvatures are calculated to elucidate the structure of the statistical manifold; an
interpretation of Ricci curvature tensor field related to information issues is discussed
at the end of this section. The affine immersions of manifolds corresponding to sensor
networks are presented in Section 6.5, which is followed by the conclusions in Section
??.
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6.2 Target tracking in sensor networks

Let target state at time k be denoted as an n dimensional vector2, i.e., θk = [θ1,k, · · · , θn,k]T ∈
Rn, where the superscript T is the matrix transpose. Target dynamics are assumed to
follow a Markov process with additive Gaussian noise.

θk+1 = f(θk) + vk, vk ∼ N (0, Qk) (6.1)

where f is the system transition (dynamical) model and vk represents process noise,
which is assumed to be a zero-mean Gaussian distribution with covariance matrixQk.
The measurement of the system at time k is modeled as

xk = µ(θk) +wk, wk ∼ N (0, Ck) (6.2)

where µ is the measurement-to-target state space transition function and wk is the
measurement noise approximated by a zero mean Gaussian distribution with covariance
matrixCk. The problem of target tracking is to find the posterior probability density of
target state based on a sequence of measurements, i.e., p(θk|x1:k), where x1:k stands
for a sequence of measurements up to time k.

Standard techniques of Bayesian estimation yield a recursive solution, given by

p(θk|x1:k) =
p(xk|θk)p(θk|x1:k−1)∫

p(xk|θk,x1:k−1)p(θk|x1:k−1)dxk
(6.3)

where p(xk|θk) is the measurement likelihood and the predicted density p(θk|x1:k−1)
is determined by the posterior density p(θk−1|x1:k−1) at time k − 1 and the transition
density p(θk|θk−1):

p(θk|x1:k−1) =

∫
p(θk|θk−1)p(θk−1|x1:k−1) dθk−1. (6.4)

The measurement likelihood plays a central role in the “Bayesian update” algorithm
of (6.3). In fact, this measurement density function is fully determined by the in-
trinsic properties of the underlying sensor network and its form has a great influence
on the computational solution of the tracking problem. In practice, the likelihoods
of most implementable sensor networks such as the binary sensor networks in [68]
and those presented in this report belong to the exponential class of density functions,
called exponential families [69]. Many popular distributions, such as Gaussian, Pois-
son, Gamma and Dirichet etc., are exponential families.

One of the most challenging issues in target tracking is the differentiation of a target
measurement from those due to other targets and clutter, which is also known as the
data association [70]. In the presence of measurement uncertainties, it is important to
know how well two closely spaced targets can be differentiated using the measurements
taken by a sensor network. The ability to separate two closely spaced targets using
their measurements is called target resolvability, which is essentially a property of the
likelihood and can be intuitively described via the platform of information geometry in
terms of the IFID between two points on a statistical manifold.

2In this report, a symbol in bold face is used to denote a vector and the subscript k refers to time index.
Sometimes, the time index is dropped and the subscript is subsequently used to index the location of an
vector without causing confusion.
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In this report, the major concern is with how much and what kind of target in-
formation can be obtained from the measurements of a sensor network at a particular
time. Issues of interest include identifiability of the underlying state with respect to
the sensor measurements and analysis and optimization of the information gathering
capacity of the sensor network. Information geometry provides intuitive, geometrical
interpretations of these problems. In the exploration of sensor network measurements
in the context of statistical manifolds, the following issues are of interest:

1. Calculation of the distance i.e., the integrated Fisher information distance (IFID)
between two targets on a statistical manifold and observing how the Euclidean
distance differs from the information distance between two targets. The IFID is
a candidate criterion to measure the resolvability of closely spaced targets. Also
of interest is how the Kullback-Leibler divergence is related to the IFID. An-
other connected distance measure is the integrated differential Kullback-Leibler
divergence, which is exactly the energy functional.

2. The amount of target information which can be acquired from the measurement
of a sensor network depends on the structure of the corresponding statistical man-
ifold, described by the curvatures of Riemannian geometry. We wish to calculate
the canonical connection as well as curvatures of the statistical manifold for a
given sensor network and show how the Ricci curvature tensor field is related to
the performance of sensor networks in the information perspective.

3. The underlying shape of a given statistical manifold is of great interest. We
explore the embedding of a parameter manifold corresponding to a given sensor
network in a flat Euclidean space. Knowledge of the manifold shape is useful in
the development of computational tools for measuring and controlling systems
and in the optimisation of the relative error performance of using sensor network
measurement.

6.3 Principles of Information Geometry

6.3.1 Definition of statistical manifold

Information geometry originates with the study of manifolds of parameters arising from
parameterized families of probability distributions that are the standard basic constructs
of estimation theory. Consider the parameterized family of probability distributions
S = { p(x|θ )}, where x is a random variable and θ = [θ1, · · · , θn]T is an n dimen-
sional parameter vector specifying the distribution. In a general context, the parameter
vector resides on an abstract manifold. It is possible to think of sensing situations where
the underlying manifold will have the topological structure of a more complex geomet-
rical object such as a sphere, a torus, or the space of orthogonal matrices [65]. The
family S is regarded as a statistical manifold with θ as its (possibly local) coordinate
system [64].

Figure 6.1 illustrates the definition of a statistical manifold. For a given state of
interest θ in the parameter space Θ ∈ Rn, the measurement x in the sample space
X ∈ Rm is an instantiation of a probability distribution p(x|θ ). Each probability

73



1k−θ
kθ

1( | )kp −x θ ( | )kp x θ

S

X

Θ 1( )ks −θ
( )ks θ

1k−x
kx

Figure 6.1: Illustration of the relation between parameter, measurement and the corre-
sponding statistical manifold.

distribution p(x|θ ) is labelled by a point s(θ) in the manifold S. The parameterized
family of probability distributions S = { p(x|θ )} forms an n-dimensional statistical
manifold where θ plays the role of a coordinate system of S. In more general situa-
tions, such as a sphere, a torus or the orthogonal group, this coordinate system will be
local, and will change depending on the part of the manifold under consideration. In
our examples, the coordinate system which denotes the target state of interest is global.

6.3.2 The metric and integrated fisher information distance

For a parameterized family of probability distributions on a statistical manifold, the
Fisher information matrix (FIM) plays the role of a Riemannian metric tensor [46].
Denoted byG(θ) = [gij(θ)], the FIM is defined as

gij(θ) = E

{
∂ log p(x|θ)

∂θi
· ∂ log p(x|θ)

∂θj

}
, (6.5)

where E signifies expectation. The FIM measures the ability of the random variable x
to discriminate the values of the parameter θ′ from θ for θ′ close to θ.

The statistical manifold3 S carries the structure of a smooth Riemannian manifold
whose metric is defined by the FIM G(θ) [46]. Here {∂ log(·)/∂θi} is a basis for a
vector space of random variables. The vector space is identified as the tangent space
of S at θ, denoted as T θ S. With this structure in place, we can bring the machinery
of Riemannian geometry to bear on statistical problems. In particular, the operations
of covariant differentiation can be defined to describe the various connections of in-
terest using the one-one correspondence between the statistical parameter model and
Riemannian manifold [71].

In a Riemannian manifold, the important concepts such as distance, angle and tan-
gent are defined analogously to the case of the Euclidean space, but they only make
sense locally. It is possible to integrate “distance” along curves between two points and

3In this report, the notation (S, g) is sometimes used to signify a Riemannian manifold equipped with a
Fisher information metric of element g.
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then select a curve of the shortest length as a distance measure between the two points
on the manifold. Information geometry allows us then to establish a genuine metric
between statistical distributions that is invariant to transformations by non-singular pa-
rameter transformations in [72]. To describe these ideas, we note that the infinitesimal
squared distance between two closely spaced distributions p(x|θ) and p(x|θ + dθ) is
given by the quadratic form of dθ as in [64],

ds2 =
∑
ij

gijdθidθj = dθTG(θ)dθ (6.6)

Consider a curve θ(t) ∈ Θ joining θ1 = θ(t1) and θ2 = θ(t2), t1 ≤ t ≤ t2, which
can be represented by a parametric equation in the parameter space with a single free
parameter t, and let the distance along the curve between its endpoints, namely the two
distributions p(x|θ1) and p(x|θ2) along θ(t) [73], be

D(θ1, θ2)
4
=

∫ t2

t1

√(dθ
dt

)T
G(θ)

(
dθ

dt

) dt (6.7)

where
4
= stands for “defined as”. This distance is dependent on the choice of the curve.

The distance between p(x|θ1) and p(x|θ2) is defined as the minimum of such distances
over all possible curves. The integrated Fisher information distance (IFID) between
two distributions p(x|θ1) and p(x|θ2) is defined as the integral along the curve θ(t)
that minimises (6.7)[74], i.e.,

DF (θ1, θ2)
4
= min
{θ(t):θ(t1)=θ1,θ(t2)=θ2}

∫ t2

t1

√(dθ
dt

)T
G(θ)

(
dθ

dt

) dt (6.8)

A curve on the statistical manifold which is a stationary point for DF (θ1, θ2) is de-
noted by γ(t) ∈ S. It is locally the shortest path joining the two points p(x|θ1) and
p(x|θ2) on the statistical manifold and is called a geodesic. The existence of curves
that are minimal in this sense is well documented in [44]. The IFID is a genuine metric,
in the sense that it satisfies the symmetry property

DF (θ1, θ2) = DF (θ2, θ1) (6.9)

for all θ1, θ2 ∈ Θ, and the triangle inequality

DF (θ1, θ2) +DF (θ2, θ3) ≥ DF (θ1, θ3), (6.10)

for all θ1, θ2, θ3 ∈ Θ.

While the evaluation of the IFID is generally difficult, the distance between two
distributions p(x|θ1) and p(x|θ2) may be approximated with a variety of alternatives.
A popular alternative to the IFID is the Kullback-Leibler divergence (KLD) [74],

KLD [p(x|θ1)||p(x|θ2)] =

∫
p(x|θ1) log

p(x|θ1)

p(x|θ2)
dx

= E
{

log p(x|θ1)− log p(x|θ2)
}
. (6.11)
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It is also well known that the following relationship between the KLD and differ-
ential Fisher information distance holds [64, 66],

ds2 = 2 KLD [p(x|θ)||p(x|θ + dθ)] (6.12)

The KLD allows for the approximation of information distance in the absence of
statistical manifold geometry, though it is not a genuine metric [74]; it fails to be sym-
metric or satisfy the triangle inequality. The failure of KLD to be a metric is a serious
issue in terms of its use to measure difference between distributions. The axioms of
symmetry and the triangle inequality are natural and accord with our intuitive notion
of distance. A phrase like “the KLD between p1 and p2” is meaningless, for example,
without explaining that it is the KLD from p1 to p2. While the IFID is more difficult
to calculate, it carries the same kind of information theoretic significance as the KLD
while being a genuine metric.

An intermediate between the KLD and the IFID is the energy functional. It is the
integral of the differential KLD. As aforementioned the KLD satisfies (6.12) for small
perturbations of θ. However, the failure of KLD to be a metric means that integration
of this infinitesimal quantity along a geodesic does not return the KLD between the
endpoints. Thus, a different quantity, which is the integral of this differential, or up
to a factor of two, can be calculated. This object, well known in differential geometry
as the energy functional E(θ), describes the total kinematic energy increment of a free
particle (of unit mass) moving along a curve θ from θ(t1) to θ(t2) in the manifold
equipped with metricG(θ), i.e.,

E(θ)
4
=

1

2

∫ t2

t1

(
dθ

dt

)T
G(θ)

(
dθ

dt

)
dt. (6.13)

Surprisingly, minimizing this energy E(θ) with respect to the curve γ(t) leads to
the same equations, i.e., the Euler-Lagrange equations in the local parameter θ, as the
solution of a geodesic parameterized by arc length t [75]. In this report, we refer to the
integral (6.13) along a geodesic path γ(t) between the two distributions as the Energy
Difference (ED) Eg(γ).

6.3.3 Geodesics and exponential map

The IFID and the ED between two distributions are defined in terms of the short-
est geodesic in the Riemannian (statistical) manifold. There may be several different
geodesics connecting two points such as two points on a torus. In the study of sensor
networks, the trajectories of geodesics in the Euclidean space are of interest. Rigor-
ously speaking, the definition of a geodesic as a stationary point of the distance integral
on a smooth manifold S with affine connection∇means that the curve γ(t) is such that
parallel transport along the curve preserves the tangent vector to the curve [76]. Us-
ing local coordinates on S, the geodesic equations are given by the Euler-Lagrange
equations as [71]

d2θk
dt2

+

n∑
i=1

n∑
j=1

Γkij
dθi
dt

dθj
dt

= 0, ∀ k ∈ {1, · · · , n} (6.14)
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where θ(t) = [θ1(t), . . . , θn(t)]T are the coordinates of the curve γ(t), Γkij , i, j =
1, . . . , n are the Christoffel symbols of the second kind and are defined as Riemannian
connection coefficients,

Γkij =
1

2

n∑
l=1

gkl
(
∂gil
∂θj

+
∂gjl
∂θi
− ∂gij

∂θl

)
(6.15)

where [gkl] is the inverse of the FIMG = [gkl].

The geodesic equations in (6.14) are ordinary differential equations for the coordi-
nates θ(t). A unique solution θ(t) can be found for given initial conditions θ(0) and
θ̇, which is analogous to an initial position θ(0) and the “speed” ν ∈ T θS in the sense
of the classical mechanics.

Assume that a geodesic is projected onto the parameter space Θ with a starting
point θ(0) and a tangent vector ν. The exponential map of the starting point is then
defined as [76]

expν [θ(0)]
4
= Ψ

(
1; θ(0), ν

)
. (6.16)

where the notation Ψ
(
t; θ(0), ν

)
is used to signify a geodesic with a starting point

θ(0), a tangent vector ν and end point θ(t).

It can be shown that the length along the geodesic between θ(0) and Ψ
(
1; θ(0), ν

)
is |ν| [76, 77]. The above concepts are appealing because a geodesic connects two
points in the Riemannian manifold with the minimum length. In classical mechanics,
the geodesics can be thought of as trajectories of free particles in a manifold. Newton’s
Laws allow one to relate the position, velocity, acceleration and various forces acting
on a body and state this relation as a differential equation for the unknown position of
the body as a function of time. When the motion of the body is at “constant speed”,
no additional force is acting on the body and the trajectory of the body is a geodesic.
Then, the distance from θ(0) to θ(t) along the geodesic is proportional to t, or more
precisely, is equal to |ν|t. Iterative application of exponential maps therefore forms an
approximation of flows along the geodesic and the optimization can converge quickly
[77]. In general, obtaining the exponential map is a non-trivial task. In most cases,
the partial derivatives of the Riemannian tensor in (6.15) lead to a rather complicated
expression of Γkij which prevents solution of the differential equations (6.14).

6.3.4 Curvatures and information

In the mathematical field of differential geometry, the Riemann curvature tensor is the
standard way to express curvature of Riemannian manifolds. To each point it associates
a tensor that measures the extent to which the metric tensor is not locally isometric to a
Euclidean space. In local coordinates, the Riemann curvature tensor components Rlijk
are given by [78]:

Rlijk =
∂

∂θj
Γlik −

∂

∂θk
Γlij +

∑
s

(ΓljsΓ
s
ik − ΓlksΓ

s
ij) (6.17)

where Γkij are the Christoffel symbols of the second kind and are given in (6.15), the
integers i, j, k, l ∈ [1, n] are the indices of coordinate components.
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Ricci curvature tensor represents the amount by which the shape of the volume
element of a geodesic ball in a curved Riemannian manifold deviates from that of the
standard ball in Euclidean space. As such, it provides one way of measuring the degree
to which the geometry determined by a given Riemannian metric might differ from that
of ordinary Euclidean n-space. The Ricci curvature tensor is essentially the unique way
of contracting the Riemann tensor [78],

Rij =
∑
l

Rlilj =
∑
l

(
∂

∂θl
Γlij −

∂

∂θj
Γlil

)
+
∑
l,m

(
ΓlijΓ

m
lm − Γmil Γ

l
jm

)
(6.18)

In this report, the matrix form of Ricci curvature tensor is denoted byR = [Rij ].

The scalar curvature (or Ricci scalar) R is the simplest curvature invariant of a
Riemannian manifold and is defined as the trace of the Ricci curvature,

R =
∑
i,j

gijRij (6.19)

where gij is the (i, j)th element of the inverse matrix of the FIM G(θ). To each
point on a Riemannian manifold, the scalar curvature assigns a single real number
determined by the intrinsic geometry of the manifold near that point. Specifically,
the scalar curvature represents the amount by which the volume of a geodesic ball in
a curved Riemannian manifold deviates from that of the standard ball in Euclidean
space. In two dimensions, the scalar curvature completely characterizes the curvature
of a surface [78], but this fails in higher dimensions.

In the vicinity of an initial point at which an arbitrarily selected geodesic γ starts,
the Ricci curvature describes the second order rate of change of the flux of geodesics
initially parallel with γ [79]. This means that the Ricci curvature measures how the
fluxes of initially parallel geodesics change in a given direction of interest, and there-
fore, it provides a measure of how well the neighboring fibers of geodesics stick to-
gether along their direction of elongation. As a special case, the fluxes of a bundle of
parallel geodesics (straight lines) in Euclidean space have no change along their elon-
gation. The behavior of a collection of geodesics reflects the value of the curvature
as well as the structure of the manifold. Non-negative Ricci curvature implies stabil-
ity and a relatively stable bundle of geodesics, while on the other hand negative Ricci
curvature implies a less coherent bundle of geodesics.

Geometrically, the Ricci curvature tensor is the mathematical object that controls
the growth rate of the volume of metric balls in a Riemannian manifold. The evolution
of volumes under the geodesics with parallel initial tangent vectors near a point in
the manifold is controlled by the Ricci curvature [80]. On the other hand, the Ricci
curvature represents the amount by which the volume element of a geodesic ball in a
manifold deviates in shape from that of the standard ball in Euclidean space. As such,
it provides one way of measuring the degree to which the geometry determined by a
given Riemannian metric might differ from that of ordinary Euclidean n-space. Near
any point θ in a Riemannian manifold (S, g), the infinitesimal volume element dµg in
local normal coordinates has the following expansion at θ [81, 82]:

dµg =
√
|G(θ)| dµEuclidean (6.20)

=

[
1− 1

6
θTR θ +O(|θ|3)

]
dµEuclidean (6.21)
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where dµEuclidean denotes the infinitesimal volume element in the parameter space (a
Euclidean space here), R is the matrix of Ricci curvature tensor given by Eq. (6.18)
and |A| denotes the determinant of matrixA.

Eq. (6.21) signifies that if the Ricci curvature is negative at θ in the manifold, the
unit geodesic ball will have larger volume than it would in Euclidean space. In the
statistical manifolds of sensor networks, the value of the determinant of the Fisher in-
formation matrix |G(θ)| represents the amount of information that can be acquired by
the underlying sensor system [83]. Therefore in this report, the Ricci scalar curvature
specifically indicates the amount of information which can be collected by the sensor
networks.

The above curvatures are defined using the canonical Levi-Civita connection (6.15)
which is a natural connection compatible with the Fisher information metric. In fact,
there are a variety of kinds of connections. In 1972, Chentsov [47] introduced a one-
parameter family of affine connections called α-connections which were later popular-
ized by Amari [84]. In particular, α = 0 corresponds to the Levi-Civita connection (in-
formation connection), α = 1 defines the e-connection (exponential connection) while
α = −1 defines the m-connection (mixture connection). The curvatures correspond-
ing to these three connections are the Riemann curvature, e-curvature andm-curvature,
respectively. All of these curvatures are intrinsic.

Many statisticians have attempted to show the relationship between curvature and
statistics in the literature. The work pioneered by Efron [48] in 1975 introduced the
concept of statistical curvature and described the basic role of the curvature in the
high-order asymptotic theory of statistical inference. He proved that the second-order
information loss of a first-order efficient estimator is related to the statistical curva-
ture of a curve representing a one-parameter family of distributions. Dawid [85] and
Madsen [86] succeeded in extending the result of Efron to the multi-parameter case
while Amari unified all of these theories in a differential-geometrical framework in
[84]. In this work, it was shown that the second-order information loss of a general
Fisher efficient estimator can be decomposed into the sum of two non-negative terms.
One is related to the e-curvature of the statistical model and the other is related to the
m-curvature of the ancillary subspace associated with the estimator.

Nevertheless, in this report, we mainly indicate the relationship between the Rie-
mann/Ricci curvature (α = 0) and the amount of information which can be collected by
the sensor networks. This is demonstrated in three scenarios in the following section.

6.4 Application Examples in sensor networks

In this Section, the analysis of sensor networks for target tracking via statistical man-
ifold techniques and information geometry is demonstrated using the following three
2D sensor network examples:

Example 1: Sensor network contains a single range-bearing sensor;

Example 2: Sensor network contains two bearings-only sensors;

Example 3: Sensor network involves three range-only sensors.
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In these examples, the state of a target is represented by the 2D target location,
i.e., θ = [θ1, θ2]T = [x, y]T . The IFID between two targets (i.e., the geodesic length
between probability distributions in the statistical manifolds) is calculated and is com-
pared with the corresponding KLD. Using IFID as a measure of the resolvability of
closely spaced targets is illustrated. In addition, the canonical Levi-Civita affine con-
nection as well as Riemannian and scalar curvatures are computed to elucidate the
structure of the statistical manifold. The relationship between the Ricci curvature ten-
sor field and the maximum amount of information that can be obtained by the network
sensors is discussed.

6.4.1 Geodesics and fisher information distance

In (6.2), it is assumed that the measurement vector x of the underlying sensor networks
obeys a multivariate normal distribution which belongs to a class of exponential family
distributions4,

x|θ ∼ N
(
µ(θ), C(θ)

)
. (6.22)

Therefore, the likelihood of the measurement x is given by

p(x|θ) = |2πC(θ)|−1/2 exp
{
− [x− µ(θ)]TC−1(θ)[x− µ(θ)]/2

}
. (6.23)

As shown in [67], the Fisher information matrix of this type of density with respect
to θ is of the form

gij(θ) =

[
∂µ(θ)

∂θi

]T
C−1(θ)

[
∂µ(θ)

∂θj

]
+

1

2
tr
[
C−1(θ)

∂C(θ)

∂θi
C−1(θ)

∂C(θ)

∂θj

]
(6.24)

A single range-bearing sensor network – Example 1

In this example, the sensor observes both range and bearing of a target, hence the
measurement model (6.2) is written as

x =

[
r
φ

]
=

[ √
x2 + y2

arctan(y/x)

]
+

[
wr
wφ

]
(6.25)

where r and φ signify the target range and bearing, respectively, relative to a sensor
placed at the origin of the coordinate frame and the zero-mean additive noise w =
[wr, wφ]T has covariance C(θ). In view of (6.22) and (6.25), we have

µ(θ) =

[ √
x2 + y2

arctan( yx )

]
, C(θ) =

[
r4σ2

r 0
0 σ2

φ

]
(6.26)

where the term r4 in the diagonal of range component of C(θ) is used to model the
effect that the amplitude of radar echo signal attenuates according to the fourth power
of the target range; σr and σφ are the standard deviations of range and bearing mea-
surement noise, respectively.

4Without confusion, subscripts for the temporal aspect of parameter θ are dropped from the notation.
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Using (6.24), we observe that the squared differential FID of Eq. (6.6) can be
calculated as,

ds2 =

2∑
i,j=1

[G(θ)]ij dθidθj =
1

(x2 + y2)2

[
x2

(x2 + y2)σ2
r

+
y2

σ2
φ

+ 8x2

]
dx2

+
1

(x2 + y2)2

[
y2

(x2 + y2)σ2
r

+
x2

σ2
φ

+ 8y2

]
dy2

+
2

(x2 + y2)2

[
xy

(x2 + y2)σ2
r

− xy

σ2
φ

+ 8xy

]
dxdy (6.27)

The IFID integral in (6.8) is obtained by calculating the geodesic that connects the
locations of the two targets. This can be done by solving the Euler-Lagrange equations
(6.14). In this example, the equations are of the following form:

d2x

dt
+ Γ1

11(
dx

dt
)2 + 2Γ1

12

dx

dt

dy

dt
+ Γ1

22(
dy

dt
)2 = 0

d2y

dt
+ Γ2

11(
dx

dt
)2 + 2Γ2

12

dx

dt

dy

dt
+ Γ2

22(
dy

dt
)2 = 0 (6.28)

where the Christoffel symbols of the second kind are (for σ2
r = 1, σ2

ϕ = 0.04)

Γ1
11 = −

(
8(x2 + y2)2 + 2x2 + y2

)
x/a, Γ2

11 =
(
8(x2 + y2)2 + y2

)
y/a,

Γ1
12 = Γ1

21 = Γ1
11

y

x
, Γ2

12 = Γ2
21 = −

(
8(x2 + y2)2 + x2 + 2y2

)
x/a,

Γ1
22 =

(
8(x2 + y2)2 + x2

)
x/a, Γ2

22 = Γ2
12

y

x
(6.29)

with a = (x2 + y2)2(8x2 + 8y2 + 1).

The equations in (6.28) are second order nonlinear differential equations and can
only be solved numerically. Each pair of initial conditions (a starting point θ(0) and a
tangent vector ν) corresponds to a unique solution of the geodesic. By setting initial
conditions in the exponential map in (6.16), where θ(0) corresponds a location and
ν(ϕ) = [cosϕ, sinϕ]T , 0 ≤ ϕ ≤ 2π is an unit tangent vector, the θ(t) of a geodesic
can be found by solving (6.28). A map of geodesics of identical lengths, that is, a circle
in the IFID metric is sketched in Fig. 6.2. Such a map illustrates differences between
the Euclidean distance and the information distance between two targets.

Fig. 6.3 (a) shows the map of geodesics for the sensor network of Example 1.
Shown are the set of geodesics

{
Ψ
(
T ; θ(0),ν(ϕ)

)
, ϕ = 2πk/64, k = 0, . . . , 63

}
,

with initial location θ(0) = [10, 10]T , unit speed |ν| = 1 and end time T = 20. The
end points form a manifold “circle” with radius |ν|T , which is the IFID along these
geodesics. For a comparison, we also plot the “circles” formed by using the KLD as a
measure of distance in Fig. 6.3 (b). The two “circles” are quite different in this case. It
is important to note that, as illustrated in Fig. 6.3(d), the “equidistant” points measured
by the IFID will generally not correspond to the same points measured in the target
state (Euclidean) space. In Fig. 6.3(c), the “circle” of ED is plotted. This plot shows
that: 1) under the Riemannian metric, a free particle will generally travel non-equal
distances along different geodesics to accumulate the same amount of energy, and 2)
the shape of the ED circle is in between that of IFID and KLD.
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Figure 6.2: Illustration of geodesics that start from the same locations with initial unit
tangent vectors.

Sensor network involving two bearings-only sensors – Example 2

In this example, we consider the problem of target localization using bearings-only
measurements from two passive sensors. As shown in Fig. 6.4, the two passive sen-
sors are located at (ηi, ξi), i = 1, 2 and observe the bearings of a target subject to a
Gaussian zero-mean random noise. The measurements satisfy (6.22) with the mean
and covariance matrix given by

µ(θ) =

 arctan
(
y−ξ1
x−η1

)
arctan

(
y−ξ2
x−η2

)  , C(θ) =

[
σ2
φ1

0

0 σ2
φ2

]
(6.30)

where θ = [x, y]T is the target state vector and σφ1
= 0.2 and σφ2

= 0.2 are the
standard deviations of the measurement noise for sensors 1 and 2, respectively.

The FIM in this case is derived as

g11(θ) =

2∑
i=1

1

σ2
φi

(y − ξi)2

[(x− ηi)2 + (y − ξi)2]2
(6.31)

g12(θ) = g21(θ) =

2∑
i=1

− 1

σ2
φi

(x− ηi)(y − ξi)
[(x− ηi)2 + (y − ξi)2]2

(6.32)

g22(θ) =

2∑
i=1

1

σ2
φi

(x− ηi)2

[(x− ηi)2 + (y − ξi)2]2
(6.33)

Fig. 6.5(a) shows the geodesics
{
Ψ
(
t; θ(0),ν

)}
, where t ∈ [0, 12], θ(0) =

[15, 15]T and ν = [cosϕ, sinϕ]T . The two passive sensors are located at (η1, ξ1) =
(0, 0) and (η2, ξ2) = (50, 10). The IFIDs along all these geodesics are equal to
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Figure 6.3: Figures of example 1: (a) FID circle; (b) KLD circle; (c) ED circle. All
circles were drawn in the target state space Θ. (d) The lengths of IFID on the statistical
manifold which corresponds to a circle centered at θ(0) = [10, 10]T in the target state
(Euclidean) space.
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Figure 6.4: The measurement model of bearings-only measurements of two sensors.

|ν|T = 12. The set of end points of geodesics describes a manifold circle of identical
FIDs centered at the target location θ(0). For comparison, the KLD circle that centered
at θ(0) is also drawn in Fig. 6.5(c). The plots are repeated at a different initial target
state θ(0) = [40, 25]T in Figs. 6.5(b) and 6.5(d). These plots highlight the different
responses of the IFID and KLD to changes in the target location in this sensor network
scenario. The ED circles for the above two cases are plotted in Fig. 6.5(e) and 6.5(f).

Sensor network involving three ranges-only sensors – Example 3

In this example, we consider an extended example of the target localization problem
in a sensor network of three range-only sensors. As shown in Fig. 6.6, these three
range-only sensors are located at (ηi, ξi), i = 1, 2, 3 and observe the ranges between a
target and the sensors subject to a random range noise. In this network configuration,
the likelihood function is described by (6.22) with

µ(θ) =


√

(x− η1)2 + (y − ξ1)2√
(x− η2)2 + (y − ξ2)2√
(x− η3)2 + (y − ξ3)2

 , C(θ) =

 r4
1σ

2
r1 0 0

0 r4
2σ

2
r2 0

0 0 r4
3σ

2
r3


(6.34)

The FIM for the measurement model (6.34) can be derived as

g11(θ) =

3∑
i=1

(x− ηi)2

r4
i

[
1

r2
i σ

2
ri

+ 8

]
(6.35)

g12(θ) = g21(θ) =

3∑
i=1

(x− ηi)(y − ξi)
r4
i

[
1

r2
i σ

2
ri

+ 8

]
(6.36)

g22(θ) =

3∑
i=1

(y − ξi)2

r4
i

[
1

r2
i σ

2
ri

+ 8

]
(6.37)

As in previous examples, the manifold circles of identical IFIDs and KLDs are plot-
ted in Fig. 6.7(a) and 6.7(c), where the geodesics start from at θ(0) = [20, 10]T and
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Figure 6.5: Figures of Example 2: (a), (c) and (e) are respectively the IFID, KLD and
ED circles at θ(0) = [15, 15]T drawn in Θ where the two passive sensors are located
at (η1, ξ1) = (0, 0) and (η2, ξ2) = (50, 10), respectively. (b), (d) and (f) are the
replicated plots of (a), (c) and (e) respectively at θ(0) = [40, 25]T .
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Figure 6.6: Example of sensor network of three range only sensors for target localisa-
tion

end with identical lengths of |ν|T = 15. The plot is repeated in Fig. 6.7(b) and 6.7(d),
where all geodesics start from θ(0) = [−10, 10]T with identical lengths of |ν|T = 10.
In this example, the three sensors are located at (η1, ξ1) = (0, 0), (η2, ξ2) = (15, 30)
and (η3, ξ3) = (50, 10) with the standard deviations of noise σr1 = 1, σr2 = 2 and
σr3 = 3, respectively. The ED circles centered at the aforementioned two locations are
given in Fig. 6.7(e) and 6.7(f) respectively.

It is interesting to verify the behavior of the geodesics in a large scale in this ex-
ample. Fig. 6.8 shows two geodesics

{
Ψ
(
t; θ(0),νi

)}
, i = 1, 2, 0 ≤ t ≤ 150,

which start from the same location θ(0) = [−10, 10]T and have initial tangent vectors
νi = [cosϕi, sinϕi]

T with ϕ1 = 0 and ϕ2 = π/2. Clearly, as illustrated in Fig. 6.8,
the geodesic between two points A and B in a Riemannian manifold is not unique.
In this, and every case, the IFID between two points corresponds to the geodesic of
shortest length.

Remarks:

1. As demonstrated in Figs. 6.3, 6.5, and 6.7, an IFID “circle” of a statistical man-
ifold generally does not correspond to a circle in Euclidean (target state) space
and vice versa.

2. Geodesics between two points in a statistical manifold are not unique; the IFID
between two points is the length of the shortest geodesic.

3. One of the main differences between the IFID and the KLD is that the IFID
measures the distance (i.e., the length of the shortest geodesic) between two
points on a statistical manifold and it is a genuine metric while the KLD is not.

4. IFID may be used to measure the underlying sensor ability to resolve closely
spaced targets. In practice, a threshold of the minimum IFID required for sepa-
rating two closely spaced targets may be set. Two closely spaced targets cannot
be resolved from a measurement if the IFID between them is below the thresh-
old. This concept is illustrated in Fig. 6.9 in terms of a “resolution cell” in the
sensor network of Example 3. All edges of the colored areas represent identical
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Figure 6.7: Figures of Example 3: (a), (c) and (e) are the circles of FID, KLD and ED
respectively drawn in Θ at θ(0) = [20, 10]T . (b), (d) and (f) are the replicated plots of
(a), (c) and (e) respectively at another location θ(0) = [−10, 10]T . Three sensors are
located at (η1, ξ1) = (0, 0), (η2, ξ2) = (15, 30) and (η3, ξ3) = (50, 10).
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Figure 6.8: Illustration of two geodesics in Example 3 which start from the same loca-
tion in different directions and are of the same length.
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colored area.
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Figure 6.9: Illustration of FID circles which may serve as the “resolution cells” for
the underlying sensor network to measure its ability to distinguish two closely spaced
targets.

6.4.2 Riemannian and scalar curvatures

Figure 6.10 depicts the Ricci scalar curvatures of the statistical manifold in the sensor
network of three range-only sensors (i.e., Example 3). In this example, the Ricci scalar
curvatures of the statistical manifold are less than or equal to zero. The plot provides
an additional graphical view of properties of the underlying sensor network. For exam-
ple, it reflects the rate of change of information which can be collected by the sensor
network at a particular point.
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Figure 6.10: Ricci scalar curvatures of the statistical manifold for the sensor network
of Example 3. (a) Ricci scalar curvature distribution. (b) Colour map of the scalar
curvature.

6.4.3 Ricci curvature tensor field
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Figure 6.11: Bundle of geodesics of identical FIDs with parallel initial tangent vectors
for the sensor network of three ranges-only sensors. Case 1 illustrates the situation of
divergent geodesic bundle and a convergent bundle example is shown in Case 2.

Figure 6.11 shows a bundle of geodesics of identical FIDs with parallel initial tan-
gent vectors in the sensor network of Example 3. Clearly, the bundle of geodesics in
Case 1 deviate from each other in the target state plane whereas the bundle of geodesics
in Case 2 are of another type of deviation, i.e., they deviate from each other in a direc-
tion that is perpendicular to the plot plane in some region. This behavior of a bundle
of initially parallel geodesics indicates the structure of the manifold corresponding to
an underlying sensor network. It is related to the information change rate of the sensor
network, which can be measured by the Ricci curvature.

Figure 6.12 represents the Ricci curvature tensor field of the statistical manifold of
Example 3. Taking sign into account, the Ricci curvature tensor field can be regarded as
information ellipses which indicate both the amplitude and direction of the information
change rate observable to the network. This information is important for target tracking
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Figure 6.12: Ricci curvature tensor field of the manifold with range-only measurements
from three sensors.

in the sensor network. In Figure 6.13, the surface of the determinant of the FIM,
which serves as the metric in the statistical manifold of Example 3, is plotted on a
logarithm scale. It illustrates the amount of information that can be acquired by the
sensor network when the target is in a particular position.

Figure 6.13: The surface of the determinant of the FIM in Example 3 plotted on a
logarithm scale.

Discussions:

1. As demonstrated in Figure 6.10, the Ricci scalar curvatures of the statistical man-
ifold in Example 3 are negative. Interestingly, the scalar curvatures of the sta-
tistical manifold of the other two examples vanish everywhere. A manifold of
zero Ricci curvature is called a Ricci-flat manifold and it indicates the manifold
is locally flat everywhere, i.e., the geodesic ball of the manifold is geometri-
cally identical to the standard ball in Euclidean space locally. This can also be
seen from Equation (6.21), where the vanishing of Ricci curvature for a sensor
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network reflects the fact that the Fisher information volume near a point on the
statistical manifold has the same geometric shape as that described in Euclidean
space.

2. Examples 2 and 3 may be generalised to a N -sensor case (i.e., N = 2, 3, · · · for
Example 2 and N = 3, 4, ... for Example 3). Our calculations indicate that the
Ricci scalar curvatures can be positive when N > 3 for Example 3. The statisti-
cal manifold is no longer Ricci flat in the case of N > 2 sensors as presented in
Example 2. These observations suggest a strategic optimisation method which is
based on the required values of Ricci scalar curvature for the sensor placement
problem in sensor network design. This topic is currently being investigated as
continuing research work.

3. As demonstrated in Fig. 6.12, the Ricci curvature tensor provides the informa-
tion change rate along a given direction on the manifold with zero Ricci curva-
ture reflecting an isotropic change rate. In addition, it indicates the amount of
information able to be collected by the underlying sensor network.

4. In many sensor network optimisation problems, such as sensor scheduling, radar
waveform design etc., the amount of information collected by the network sen-
sors serves as an important criterion. From the information geometry point of
view, the optimisation is achieved by changing the associated statistical manifold
structure, which is described by Riemannian curvatures. In [67] the potential of
optimal sensor scheduling via the information geometry has been demonstrated.

6.5 Statistical Manifold Representation

The shape of statistical manifolds of higher dimensions is difficult to describe in terms
of spaces that we are familiar with. A reasonable way is to seek a representation of the
manifold as an immersion in the Euclidean space Rn, which will preserve the differ-
ential structure of the original manifold and will have a derivative which is everywhere
injective. The affine immersion discussed by Dodson and Matsuzoe in [87] provides
such a framework in which the underlying statistical manifold of sensor networks can
be realised in Rn. In this section, we will discuss the general affine immersion for the
multivariate Gaussian manifold corresponding to our sensor network examples.

6.5.1 Exponential family of probability density functions

As we mentioned earlier, the measurement of the sensors we discussed obeys a mul-
tivariate normal distribution which belongs to the exponential family of distributions.
The exponential family, which includes popular distributions such as the Gaussian,
Poisson and Gamma, is widely used in probability and statistics due to its many desir-
able properties [69].

An n-dimensional set of probability density functions S = {pθ|θ ∈ Θ ⊂ Rn} is
said to be an exponential family when the density functions can be expressed in terms
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of functions {C, F1, · · · , Fn} and a function ϕ on Θ such that [88]:

pθ(x) = exp
{
C(x) +

∑
i

(
θiFi(x)

)
− ϕ(θ)

}
(6.38)

where x ∈ Ω is a vector valued measurement, θ = [θ1, · · · , θn]T are the natural co-
ordinates or canonical parameters, C(x) represents the exponential component which
is independent of θ and F (x) = [F1(x), · · · , Fn(x)]T are sufficient statistics for θ.
The function ϕ is called the potential function of the exponential family and it is found
from the normalisation condition

∫
Ω
pθ(x)dx = 1, i.e.,

ϕ(θ) = log

∫
Ω

exp
{
C(x) +

∑
i

(
θiFi(x)

)}
dx (6.39)

From the definition of an exponential family, and with ∂i = ∂/∂θi, we use the
log-likelihood function l(θ, x) = log(pθ(x)) to obtain

∂il(θ, x) = Fi(x)− ∂iϕ(θ) (6.40)

and
∂i∂j l(θ, x) = −∂i∂jϕ(θ) (6.41)

The Fisher information metric G on the n-dimensional space of parameters Θ ⊂
Rn, equivalently on the set S = {pθ|θ ∈ Θ ⊂ Rn}, has coordinates [89]:

gij = −
∫

Ω

∂i∂j l(θ, x)pθ(x)dx = ∂i∂jϕ(θ) (6.42)

Then, (S, g) is a Riemannian n-manifold with Levi-Civita connection given by
[89]:

Γkij(θ) =

n∑
l=1

1

2
gkl(∂igji + ∂jgil − ∂lgij)

=

n∑
l=1

1

2
gkl∂i∂j∂lϕ(θ). (6.43)

where [gkl] represents the inverse of [gkl].

The justification of the underlying statistical manifold representation by immersion
(in the natural parameter θ) in an exponential family can be viewed from the following
two points:

1. Any exponential family of distributions has a unique a potential function and
the latter completely describes this exponential family of distributions [90]. In
other words, we can fully understand the mean and covariance of the sufficient
statistics Fi(x), i = 1, · · · , n in (6.38) by differentiating ϕ(θ), i.e.,

E
{
Fi(x)

} ∆
= η = ∂iϕ(θ) (6.44)

E
{[
Fi(x)− E(Fi(x))

][
Fj(x)− E(Fj(x))

]T}
= ∂i∂jϕ(θ) (6.45)

2. The Fisher information matrix (6.42) and thus the connection (Christoffel sym-
bols) of (6.43) corresponding to the statistical manifold can all be described using
the potential function ϕ(θ).
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6.5.2 Affine immersion of a manifold

Let M be an n-dimensional manifold, and f an immersion from M to Rn+1, i.e., the
differential map

Dpf : TpM =⇒ Tf(p)Rn+1 (6.46)

is an injective map in the tangent space, denoted as Tp, at every point p ∈M . Suppose
that ξ is a local vector field along f . The pair {f, ξ} is said to be an affine immersion
from M to Rn+1 if, for each point p ∈M , the following formula holds [90]:

T f(p)Rn+1 = f∗(T pM)
⊕

Span{ξp} (6.47)

where T f(p)Rn+1 can be identified with Rn+1, ∀ f(p) ∈ Rn+1,
⊕

denotes the direct
sum of two subspaces and Span is the span operator on a collection of vectors in linear
algebra. We call ξ a transversal vector field. Eq. (6.47) is a technical requirement to
ensure that the differential structure is preserved into the immersion.

For manifolds of multivariate Gaussian distributions, which is the case of our sensor
network scenarios, the representation of manifold can be realized in Euclidean space
Rn+1 by the following affine immersion:

Proposition 6.5.1. Let M be the multivariate Gaussian manifold with the Fisher in-
formation metric g. Denote by (θ, Ξ) a natural coordinate system. Then M can be
realized in Rn+1 by the graph of a potential function, namely, M can be realized by
the affine immersion {f, ξ}:

f : M → Rn+1 :

[
θ
Ξ

]
7→

 θ
Ξ
ϕ

 , ξ =

 0
0
1

 (6.48)

where ϕ is the potential function.

We give a simple 1D example in the next sub-section to demonstrate how to find
the potential function from a given distribution.

6.5.3 An example of a gaussian 2-manifold

The family of univariate normal or Gaussian density functions has an event space Ω =
R and the probability density functions are given by

M =

{
p(x; µ, σ2)|p(x; µ, σ2) =

1√
2πσ

e−
(x−µ)2

2σ2 , µ ∈ R, σ ∈ R+

}
(6.49)

The mean µ and standard deviation σ are frequently used as a local coordinate
system (ξ1, ξ2) = (µ, σ) as in [90].
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The univariate Gaussian density can be written as

p(x; θ1, θ2) = exp

{
µ

σ2
x− 1

2σ2
x2 − µ2

2σ2
− 1

2
log(2πσ2)

}
= exp

{
θ1x+ θ2x

2 −
[
− θ2

1

4θ2
+

1

2
log(− π

θ2
)

]}
= exp {C(x) + F1(x)θ1 + F2(x)θ2 − ϕ(θ1, θ2)} (6.50)

In the Gaussian 2-manifold, set θ1 = µ
σ2 and θ2 = − 1

2σ2 . Then (θ1, θ2) =
( µσ2 , − 1

2σ2 ) is the natural coordinate system and

ϕ = − θ2
1

4θ2
+

1

2
log(− π

θ2
) =

µ2

2σ2
+ log(

√
2πσ) (6.51)

is the corresponding potential function.

For a natural coordinate system, there exists a function ϕ (potential function) onM
such that the Fisher information metric is given by the Hessian of ϕ, that is

∂2ϕ

∂θi∂θj
= gij (6.52)

where [gij ] is the Fisher information metric with respect to the natural coordinate sys-
tem.

According to (6.52), the Fisher metric of the Gaussian 2-manifold with respect to
natural coordinates (θ1, θ2) is given by

[gij ] =

[ −1
2θ2

θ1
2θ22

θ1
2θ22

θ2−θ21
2θ32

]
=

[
σ2 2µσ2

2µσ2 2σ2(2µ2 + σ2)

]
(6.53)

6.5.4 Manifold representations of sensor networks

For the sensor network examples discussed in this report, the measurement errors are
characterized with multivariate Gaussian distributions, i.e.,

x ∼ N
(
µ(ξ), C(ξ)

)
(6.54)

where ξ = [x, y]T ∈ Θ is the state of interest in the local coordinate system.

The probability density function of the measurement error is

p(x; ξ) = |2πC(ξ)|−1/2 exp
{
−[x− µ(ξ)]TC−1(ξ)[x− µ(ξ)]/2

}
(6.55)

It can be represented in exponential form using the collection of sufficient statistics
(x, xxT ). Let θ be a m-vector of parameters associated with the vector of sufficient
statistics x = [x1, · · · , xm]T , where m is the dimension of x, and a symmetric matrix
Ξ ∈ Rm×m associated with the matrix xxT . Then the multivariate Gaussian is an
exponential family of the form [91]:

p(x; θ) = exp
{
< θ, x > + << Ξ, xxT >> −ϕ(θ, Ξ)

}
(6.56)
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where < θ, x >=
∑m
i=1 θixi is the Euclidean inner product on Rm, and

<< Ξ, xxT >>= tr(ΞxxT ) =

m∑
i=1

m∑
j=1

Ξijxixj (6.57)

is the Frobenius inner product on symmetric matrices.

We may write the natural parameters of mixed-type (θ, Ξ) = (C−1µ, − 1
2C
−1)

with the corresponding potential function [92]

ϕ(θ, Ξ) = −1

4
tr(Ξ−1θθT )− 1

2
log | −Ξ|+ m

2
log π (6.58)

Figure 6.14: Affine immersion for the manifold of single conventional radar network
in Example 1.

The potential function ϕ(θ, Ξ) is a strictly convex and differentiable function that
specifies uniquely the exponential family. The one-to-one mapping from the original
parameters (µ, C) to natural parameters (θ, Ξ) is given by[

µ
C

]
⇔
[
C−1µ
− 1

2C
−1

]
(6.59)

Therefore, the potential function can be expressed in terms of local parameters as fol-
lows:

ϕ(θ, Ξ) =
1

2
µTC−1µ+

1

2
log |C|+ m

2
log 2π. (6.60)

Figures 6.14–6.16 show affine immersions in R3 for the manifolds of the three
basic forms of sensor network examples discussed previously. Intuitively, these plots
indicate the maximum relative error of the parameters in the applications to sensor
networks.

Discussions:
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Figure 6.15: Affine immersion for the manifold of two bearings-only sensor network
in Example 2.

1. For distributions of the exponential family, a statistical manifold can be repre-
sented by its potential function in natural parameters via an immersion which
preserves the differential structure of the statistical manifold. In our examples as
illustrated in Figures 6.14, 6.15 and 6.16, the manifold representation, given by
the potential function ϕ(θ, Ξ) in Eq. (6.60), forms a curved surface in terms of
local parameter [x, y]T . Their values – under the re-parameterized parameters
(θ, Ξ), indeed, signify possible relative error (or uncertainty) of the underlying
sensor network measurement, that is, the ratio of measurement variance to the
measurement value.

2. The lower the surface ϕ(θ, Ξ) is, the smaller the possible relative error of a
measurement is. In particular, as shown in Fig. 6.14 and Fig. 6.15, since the
measurement model involves bearings, the value of ϕ will be higher when the
bearing measurement value is smaller.

3. We observed that the manifold representations of all three examples have neg-
ative scalar Ricci curvatures everywhere. Generally speaking, the manifold of
a Gaussian distribution in natural parameters results in a negative constant cur-
vature, while the manifold of a curved Gaussian, as in the examples presented
in this report, is of negative curvature everywhere. The curvatures of statistical
manifolds are closely related to the state estimation problem [84] and we will
address this issue for sensor networks in separate research work.
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Figure 6.16: Affine immersion for the manifold of three ranges-only sensor network in
Example 3.

97



Chapter 7

Concluding Remarks

We have studied the detection performance for trees with unbounded height. For bal-
anced binary relay trees, the total error probability decays to 0 in the rate of

√
N , even

if the sensors are asymptotically crummy. In addition, the scaling law for the decay rate
remains in the case where sensors fail with certain probabilities. In the case where the
communication links fail with certain probabilities, if all the links fail with identical
probability, then the decay rate is strictly smaller than the non-failure case. If the link
failure probabilites decay to 0 sufficiently fast towards the fusion center, then the scal-
ing law for the decay rate remains. We further investigate the overall strategy which
achieves the maximum of the reduction in the total error probability. We provide the
explicit solution using dynanmic programming methold and Bellman’s princeple. We
show that the reduction in the total error probability is a submodular function. There-
fore, the greedy strategy achieves a total error probability that is at least a factor of
the error probabilty achieved by the overall optimal strategy. We further study the de-
tection performance of M -ary relay trees, which is a more general architecture. The
impact of non-binary message alphabet is also investigated.

In this report, the use of information geometry theory in the performance evaluation
of sensor networks is considered and the potential application of information geome-
try in sensor network analysis and design is demonstrated using three basic types of
sensor network scenarios. In addition, an Euclidean immersion method for the repre-
sentation of a statistical manifold is presented. The analysis results obtained suggest
that geometrical constructs of statistical manifolds such as geodesics, Fisher informa-
tion distance and curvature can be useful for the evaluation of the sensor measurement
process and may facilitate sensor network design, evaluation and optimisation. The
results presented in this report also highlight that information geometry offers a con-
sistent and comprehensive means for understanding and solving sensor network issues
in target tracking.

One limitation of our results is that it applys to particular architecture. Future
research includes analyzing more general architectures. For example, un-balanced hi-
erachical architecture, trees with non-uniform degree, etc. For the communication link
failure case, our model is essentially a deletion channel model for balanced binary re-
lay trees. We can further consider symmetric channel, noisey channel, even a stucked

98



on/off channel for balanced binary relay trees and more general architectures. Another
chanllenging question is the he correlated sensor measurement case.
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Appendix A

Proof of Proposition 2.3.1

If (αk, βk) ∈ Bm, where m is a positive integer and m 6= 1, then

Lk+1

L2
k

=
1− (1− αk)2 + β2

k

(αk + βk)2
.

The following calculation establishes the lower bound of the ratio Lk+1/L
2
k:

Lk+1 − L2
k = 1− (1− αk)2 + β2

k − (αk + βk)2

= −2α2
k − 2αkβk + 2αk

= 2αk(1− (αk + βk)) ≥ 0,

which holds in Bm.

To show the upper bound of the ratio Lk+1/L
2
k, it suffices to prove that

Lk+1 − 2L2
k = 1− (1− αk)2 + β2

k − 2(αk + βk)2

= −3α2
k − 4αkβk + 2αk − β2

k ≤ 0.

The partial derivative with respect to βk is

∂(Lk+1 − 2L2
k)

∂βk
= −2βk − 4αk ≤ 0,

which is non-positive, and so it suffices to consider values on the upper boundary of
B1.

Lk+1 − 2L2
k = 1− (1− αk)2 + β2

k − 2(αk + βk)2

= 2β2
k − 2(αk + βk)2 ≤ 0.

In consequence, the claimed upper bound on the ratio Lk+1/L
2
k holds.
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Appendix B

Proof of Proposition 2.3.2

From Proposition 2.3.1 we have, for k = 0, 1, . . . ,m− 2,

Lk+1 = akL
2
k

for some ak ∈ [1, 2]. Then for k = 1, 2, . . . ,m− 1,

Lk = ak−1 · a2
k−2 . . . a

2k−1

0 L2k

0 ,

where ai ∈ [1, 2] for each i. Hence,

logL−1
k =− log ak−1 − 2 log ak−2 − . . .

− 2k−1 log a0 − logL2k

0 .

Since logL−1
0 > 0 and 0 ≤ log ai ≤ 1 for each i, we have

logL−1
k ≤ 2k logL−1

0 .

Finally,

logL−1
k ≥ −1− 2− . . .− 2k−1 + 2k logL−1

0

≥ −2k + 2k logL−1
0 = 2k

(
logL−1

0 − 1
)
.
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Appendix C

Proof of Proposition 2.3.3

If (αk, βk) ∈ Bm, where m is a positive integer and m 6= 1, then

Lk+1

L
√

2
k

=
1− (1− αk)2 + β2

k

(αk + βk)
√

2
.

To prove the upper bound of the ratio, it suffices to show that

ψ(αk, βk) = 1− (1− αk)2 + β2
k − (αk + βk)

√
2 ≤ 0.

The second-order partial derivative of ψ with respect to αk is non-positive:

∂2ψ

∂α2
k

= −2−
√

2(
√

2− 1)(αk + βk)
√

2−2 ≤ 0.

Therefore, the minimum of ∂ψ/∂αk is on the lines αk+βk = 1 and (1−αk)2+β2
k = 1.

It is easy to show that ∂ψ/∂αk ≥ 0. In consequence, the maximum of ψ is on the lines
αk + βk = 1 and (1 − αk)2 + β2

k = 1. If αk + βk = 1, then it is easy to see that
ψ = 0. If (1−αk)2 +β2

k = 1, then ψ = 2β2
k− (αk+βk)

√
2. It is easy to show that the

maximum value of ψ lies at the intersection of αk + βk = 1 and (1− αk)2 + β2
k = 1,

where ψ = 0. Hence, the ratio Lk+1/L
√

2
k is upper bounded by 1.
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Appendix D

Proof of Proposition 2.3.4

From Proposition 2.3.3 we have, for k = 0, 1, . . . ,m− 2,

Lk+1 = akL
√

2
k

for some ak ∈ (0, 1]. Then for k = 1, 2, . . . ,m− 1,

Lk = ak−1 · a
√

2
k−2 . . . a

√
2
k−1

0 L
√

2
k

0 ,

where ai ∈ (0, 1] for each i. Hence,

logL−1
k =− log ak−1 −

√
2 log ak−2 − . . .

−
√

2
k−1

log a0 − logL
√

2
k

0 .

Since logL−1
0 > 0 and log ai ≤ 0 for each i, we have

logL−1
k ≥

√
2
k

logL−1
0 .

Therefore, we have
logP−1

N ≥
√
N logL−1

0 .
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Appendix E

Proof of Proposition 2.3.5

Because of symmetry, we only have to prove the case where (αk, βk) lies in RU . We
consider two cases: (αk, βk) ∈ B1 and (αk, βk) ∈ B2 ∩RU .

In the first case,

Lk+2

L2
k

=
(1− (1− αk)2)2 + 1− (1− β2

k)2

(αk + βk)2
.

To prove the lower bound of the ratio, it suffices to show that

Lk+2 − L2
k = (1− (1− αk)2)2 + 1− (1− β2

k)2 − (αk + βk)2

= (1− αk − βk)((βk − αk)3 + 2αkβk(βk − αk)

+ (βk − αk)2 + 2α2
k) ≥ 0.

We have 1 − αk − βk > 0 and βk ≥ αk for all (αk, βk) ∈ B1, resulting in the above
inequality.

To prove the upper bound of the ratio, it suffices to show that

Lk+2 − 2L2
k = α4

k − 4α3
k + 2α2

k − 4αkβk − β4
k ≤ 0.

The partial derivative with respect to βk is

∂(Lk+2 − 2L2
k)

∂βk
= −4αk − 4β3

k ≤ 0,

which is non-positive. Therefore, it suffices to consider its values on the curve βk =
αk, on which Lk+2 − 2L2

k is clearly non-positive.

Now we consider the second case, namely (αk, βk) ∈ B2 ∩RU , which gives

Lk+2

L2
k

=
1− (1− αk)4 + β4

k

(αk + βk)2
.
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To prove the lower bound of the ratio, it suffices to show that

Lk+2 − L2
k = (1− (1− αk)4) + β4

k − (αk + βk)2

= (1− αk − βk)(α3
k − α2

kβk − 3α2
k + αkβ

2
k

+ 2αkβk − β3
k − β2

k + 4αk) ≥ 0.

Therefore, it suffices to show that

φ(αk, βk) =α3
k − α2

kβk − 3α2
k + αkβ

2
k

+ 2αkβk − β3
k − β2

k + 4αk ≥ 0.

The partial derivative with respect to βk is

∂φ

∂βk
= −(αk − βk)2 − 2β2

k + 2(αk − βk) ≤ 0.

Thus, it is enough to consider the values on the upper boundaries
√

1− βk +
√
αk = 1

and αk + βk = 1.

If αk + βk = 1, then the inequality is trivial, and if
√

1− βk +
√
αk = 1, then

Lk+2 − L2
k = 2α2

k(1− 2
√
αk)(2αk − 6

√
αk + 5)

and the inequality holds because αk ≤ 1
4 in region B2 ∩RU .

The claimed upper bound for the ratio Lk+2/L
2
k can be written as

Lk+2 − 2L2
k = (1− (1− αk)4) + β4

k − 2(αk + βk)2

= −α4
k + 4α3

k − 8α2
k + 4αk

− 4αkβk + β4
k − 2β2

k ≤ 0.

The partial derivative with respect to βk is

∂(Lk+2 − 2L2
k)

∂βk
= −4αk + 4β3

k − 4βk ≤ 0.

Again, it is sufficient to consider values on the upper boundary of B1. Hence,

Lk+2 − 2L2
k = 2β2

k − 2(αk + βk)2 ≤ 0.
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Appendix F

Proof of Proposition 2.3.6

In the case where (αk, βk) ∈ B2 ∩RU , from Proposition 2.3.3, we have Lk+1 ≤ L
√

2
k .

Moreover, it is easy to show that Lk+2 ≤ Lk+1. Thus, we have Lk+2 ≤ L
√

2
k .

In the case where (αk, βk) ∈ B1, it suffices to prove that

ϑ(αk, βk) = (1− (1− αk)2)2 + 1− (1− β2
k)2 − (αk + βk)

√
2 ≤ 0.

We take second-order partial derivative of ϑ with respect to αk along the lines
αk + βk = c in this region. It is easy to show that the derivative is non-negative:

∂2ϑ

∂α2
k

= 12((1− αk)2 − β2
k) ≥ 0.

Therefore, we conclude that the maximum of ϑ lies on the boundaries of this region.
If αk + βk = 1, then we have ϑ(αk, βk) = 0. If (1 − αk)2 + β2

k = 1, then we have
αk+1 = βk+1. Moreover, if αk+1 = βk+1, then we can show that Lk+2 = Lk+1.
Hence, it suffices to show that Lk+1/L

√
2

k ≤ 1 on the line (1− αk)2 + β2
k = 1, which

has been proved in Proposition 2.3.3. If βk = αk, then Lk+1 = Lk and (αk+1, βk+1)

lies on the lower boundary of RL, on which we have Lk+2/L
√

2
k+1 ≤ 1. Thus, we have

Lk+2/L
√

2
k ≤ 1.
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Appendix G

Proof of Proposition 2.3.7

From Proposition 2.3.6 we have, for k = 0, 2, . . . , logN − 2,

Lk+2 = akL
√

2
k

for some ak ∈ (0, 1]. Then for k = 2, 4, . . . , logN , we have

Lk = a(k−2)/2 · a
√

2
(k−4)/2 . . . a

√
2
(k−2)/2

0 L
√

2
k/2

0 ,

where ai ∈ (0, 1] for each i. Therefore,

logL−1
k =− log a(k−2)/2 −

√
2 log a(k−4)/2 − . . .

−
√

2
(k−2)/2

log a0 − logL
√

2
k/2

0 .

Since logL−1
0 > 0 and log ai ≤ 0 for each i, we have

logL−1
k ≥

√
2
k/2

logL−1
0 .

Therefore, we have
logP−1

N ≥ 4
√
N logL−1

0 .
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Appendix H

Proof of Proposition 2.3.8

The first inequality is equivalent to

Lk+1 − L2
k = 1− (1− αk)2 + β2

k − (αk + βk)2

= 2αk(1− (αk + βk)) ≥ 0,

which holds for all (αk, βk) ∈ U .

The second inequality is equivalent to

Lk+1 − Lk = 1− (1− αk)2 + β2
k − (αk + βk)

= (αk − βk)(1− (αk + βk)) ≤ 0,

which holds for all (αk, βk) ∈ U .
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Appendix I

Proof of Theorem 2.3.2

From Proposition 2.3.8, we have
L1 = ãL2

0

for some ã ≥ 1. And, by Proposition 2.3.5, the following identity holds.

Lk+2 = akL
2
k

for k = 1, 3, . . . , logN − 2 and some ak ∈ [1, 2]. Hence, we can write

Lk = ã2(k−1)/2 · a(k−1)/2 · a2
(k−3)/2 . . . a

2(k−3)/2

1 L2(k+1)/2

0 ,

where ai ∈ [1, 2] for each i and ã ≥ 1. Let k = logN , we have

logP−1
N = −2(k−1)/2 log ã− log a(k−1)/2 − . . .
− 2(k−3)/2 log a1 +

√
2N logL−1

0 .

Notice that logL−1
0 > 0 and for each i, log ai ≥ 0. Moreover, log ã ≥ 0. Hence,

logP−1
N ≤

√
2N logL−1

0 .

It follows by Proposition 2.3.8 that

Lk = ãLk−1

for some ã ∈ (0, 1]. By Proposition 2.3.5, we have

Lk+2 = akL
2
k

for k = 0, 2, . . . , logN − 3 and some ak ∈ [1, 2]. Thus,

Lk = ã · a(k−3)/2 · a2
(k−3)/2 . . . a

2(k−3)/2

0 L2(k−1)/2

0 ,

where ai ∈ [1, 2] for each i and ã ∈ (0, 1]. Hence,

logP−1
N = − log ã− log a(k−1)/2 − . . .

− 2(k−3)/2 log a1 +

√
N

2
logL−1

0 .
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Notice that logL−1
0 > 0 and for each i, 0 ≤ log ai ≤ 1 and log ã ≤ 0. Thus,

logP−1
N ≥ −

√
N

2
+

√
N

2
logL−1

0 =

√
N

2

(
logL−1

0 − 1
)
.
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Appendix J

Proof of Proposition 2.3.9

The upper bound for Lk+1/Lk is trivial. By Proposition 2.2.1, if (αk−1, βk−1) ∈
B2 ∩RU , then

1 ≤ Lk
L2
k−1

≤ 2;

i.e.,
1

2
≤ L2

k−1

Lk
≤ 1,

and in consequence of Proposition 2.3.5, if (αk−1, βk−1) ∈ B2 ∩RU , then

1 ≤ Lk+1

L2
k−1

≤ 2.

Therefore, we have
1

2
≤ Lk+1

Lk
.
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Appendix K

Proof of Theorem 2.3.3

If (αm, βm) ∈ B2 ∩RU and m is even, then by Proposition 2.3.1, we have

Lm+1 = ãL2
m

for some ã ∈ [1, 2].

By Proposition 2.3.5, we have

Lk+2 = akL
2
k

for k = 0, 2, . . . ,m− 2,m+ 1, . . . , logN − 2, and some ak ∈ [1, 2]. Hence,

Lk = a(k−1)/2 · a2
(k−3)/2 . . . a

2(k−1)/2

0 L2(k+1)/2

0 ,

where ai ∈ [1, 2] for each i.

Let k = logN , we have

logP−1
N = − log a(k−1)/2 − 2 log a(k−3)/2 − . . .
− 2(k−1)/2 log a0 +

√
2N logL−1

0 .

Notice that logL−1
0 > 0 and for each i, 0 ≤ log ai ≤ 1. Thus,

logP−1
N ≤

√
2N logL−1

0 .

Finally,

logP−1
N ≥ −

√
2N +

√
2N logL−1

0 =
√

2N
(
logL−1

0 − 1
)
.

If (αm, βm) ∈ B2 ∩RU and m is odd, then by Proposition 2.3.9 we have

Lm+2 = ãLm+1

for some ã ∈ [1/2, 1].
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It follows from Proposition 2.3.5 that

Lk+2 = akL
2
k

for k = 0, 2, . . . ,m− 1,m+ 2, . . . , logN − 2 and some ak ∈ [1, 2]. Therefore,

Lk = a(k−3)/2 · a2
(k−3)/2 . . . a

2(k−3)/2

0 · ã2(k−m−2)/2

L2(k−1)/2

0 ,

where ai ∈ [1, 2] for each i and ã ∈ [1/2, 1]. Hence,

logP−1
N = −

√
N

2m+2
log ã− log a(k−3)/2 − . . .

−
√
N/2

2
log a0 +

√
N

2
logL−1

0 .

Notice that logL−1
0 > 0 and for each i, 0 ≤ log ai ≤ 1 and−1 ≤ log ã ≤ 0. Thus,

logP−1
N ≤

√
N

2
logL−1

0 +

√
N

2m+2
.

Finally,

logP−1
N ≥ −

√
N

2
+

√
N

2
logL−1

0 =

√
N

2

(
logL−1

0 − 1
)
.
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Appendix L

Proof of Theorem 2.3.4

If logN < m, then this scenario is the same as that of Corollary 2.3.1. Therefore,

N
(
logL−1

0 − 1
)
≤ logP−1

N ≤ N logL−1
0 .

If logN ≥ m and logN − m is odd, then it takes (m − 1) steps for the system
to move into B1. After it arrives in B1, there is an even number of levels left because
logN −m is odd.

By Proposition 2.3.1, we have

Lk+1 = ãkL
2
k

for k = 0, 1, . . . ,m−2 and some ãk ∈ [1, 2], and in consequence of Proposition 2.3.5,

Lk+2 = akL
2
k

for k = m− 1,m− 3, . . . , logN − 2 and some ak ∈ [1, 2]. Thus,

Lk = a(k+m−3)/2 · a2
(k+m−5)/2 . . . a

2(k+m−3)/2

0 L2(k+m−1)/2

0 ,

where ai ∈ [1, 2] for each i.

Let k = logN . Then we obtain

logP−1
N = − log a(k+m−3)/2 − 2 log a(k+m−5)/2 − . . .

−
√

2m−1N

2
log a0 +

√
2m−1N logL−1

0 .

Note that logL−1
0 > 0, and for each i, 0 ≤ log ai ≤ 1. Thus,

logP−1
N ≤

√
2m−1N logL−1

0 .

Finally,

logP−1
N ≥ −

√
2m−1N +

√
2m−1N logL−1

0

=
√

2m−1N
(
logL−1

0 − 1
)
.

For the case where logN −m is even, the proof is similar and it is omitted.
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Appendix M

Proof of Proposition 2.3.10

Without loss of generality, we consider the upper half of S, denoted by SU . As we
shall see, the image of SU is exactly the reflection of SU with respect to the line β = α
(denoted by SL). We know that SU := {(α, β) ∈ U|β ≤ √α and β ≥ 1− (1− α)2}.

The image of SU under f can be calculated by

(α′, β′) = f(α, β) = (1− (1− α)2, β2),

where (α, β) ∈ U . The above relation is equivalent to

(α, β) = (1−
√

1− α′,
√
β′).

Therefore, we can calculate images of boundaries for RU under f .

The image of the upper boundary β ≤ √α is

√
β′ ≤

√
1−
√

1− α′;

i.e.,
α′ ≥ 1− (1− β′)2,

and that of the lower boundary β ≥ 1− (1− α)2 is√
β′ ≥ 1− (1− (1−

√
1− α′))2;

i.e.,
α′ ≤

√
β′.

The function f is monotone. Hence, images of boundaries of SU are boundaries of
SL. Notice that boundaries of RL are symmetric with those of RU about β = α. We
conclude that S is an invariant region.
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